Genoa, Italy
Genoa, Italy

Ansaldo Energia, an Italian power engineering company. It is based in Genoa. Wikipedia.


Time filter

Source Type

Methods are disclosed for treating a base materials in a form of metallic powder made of super alloys based on Ni, Co, Fe or combinations thereof, or made of TiAl alloys, which treated powder can be used for additive manufacturing, such as for Selective Laser Melting of three-dimensional articles.


Patent
Ansaldo Energia | Date: 2016-10-05

The present disclosure relates to gas turbines and to a damper assembly for a combustion chamber of a gas turbine. A damper assembly as disclosed herein may be adjusted to different frequencies during operation and/or deactivated for different operation regimes.


Patent
Ansaldo Energia | Date: 2017-05-17

A method of controlling a steam turbine comprises: defining a simplified model (M) of a rotor (5c) of a steam turbine in the form of a homogeneous and isotropic cylinder; determining a stress distribution in the rotor (5c) from parameters of the simplified model (M) and temperature values (ST) of steam (Q_(HP)) supplied to the steam turbine (5); comparing the stress determined in the rotor (5c) with a stress threshold (_(TH)); and controlling the steam turbine (5) on the basis of a comparison between the stress determined in the rotor (5c) and the stress threshold (_(TH)).


A method for balancing a rotor (1) of a gas turbine having a plurality of discs (2) arranged in succession along a line (A) includes the steps of: acquiring eccentricity measurements (ER1,..., ERP) of the discs (2) of the rotor (1) of a gas turbine in an initial configuration; based on the eccentricity measurements (ER1,..., ERP), identifying at least two critical areas of the rotor (1), in which variations of eccentricity between consecutive discs (2) are not in compliance with an acceptance criterion; identifying at least a first group of consecutive discs (2), arranged between two critical areas; determining at least one corrective action of the rotor (1), the corrective action including a relative rotation about the axis (A) between two consecutive discs (2) of the first group of discs (2); and performing the corrective action.


Patent
Ansaldo Energia | Date: 2016-11-17

A method of reconditioning and fabricating turbine components is provided. In one embodiment, the method is performed on a fuel nozzle assembly of a gas turbine, and comprises providing a pre-assembled fuel nozzle assembly having a base, a body extending from the base to a fuel nozzle tip, an inner assembly, and an outer assembly. The method further comprises removing at least a portion of the fuel nozzle tip and the inner assembly, coupling and joining a replacement inner assembly to the base, and coupling and joining a replacement fuel nozzle tip to the replacement inner assembly and to the outer assembly to provide a reconditioned fuel nozzle.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-17-2015 | Award Amount: 9.63M | Year: 2016

The share of renewable energy is growing rapidly driven by the objective to reduce greenhouse gas emissions. The amount of electric power which can be supplied to the grid depends on the time of the day and weather conditions. A conventional fleet of thermal power plants is required to compensate for these fluctuations before large scale energy storage technologies will be mature and economically viable. All power market projections expect this to be the case for the next 50 years at least. For a strong expansion of renewables, this fleet has to operate flexibly at competitive cost. Current power plants cannot fill this role immediately without impeding their efficiency and engine lifetime through increased wear and damage induced by the higher number of (shorter) operating/loading cycles. New technologies need to be introduced to balance demand peaks with renewable output fluctuations at minimal fuel consumption and emissions without negative effects on cycling operation. The FLEXTURBINE partners have developed a medium to long term technology roadmap addressing future and existing power plants. The FLEXTURBINE project presented hereafter is the first step in such technology roadmap and consists of: (1) new solutions for extended operating ranges to predict and control flutter, (2) improved sealing and bearing designs to increase turbine lifetime and efficiency by reducing degradation/damages, and (3) an improved lifecycle management through better control and prediction of critical parts to improve competitive costs by more flexible service intervals and planned downtime, and by reducing unplanned outages. In all areas, individual technologies will be developed from TRL 3 to TRL 4-6. FLEXTURBINE brings together the main European turbine manufacturers, renowned research institutes and universities. It involves plant and transmission system operators to include user feedback and to prepare the take-up of the FLEXTURBINE technologies in power plants world-wide.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP3-02-2016 | Award Amount: 7.29M | Year: 2016

IN2SMART represents the 1st proposal of the Shift2Rail members referred, according to MAAP, to the following Technology Demonstrators (TDs): TD3.7 Railway Information Measuring and Monitoring System (RIMMS), TD3.6 Dynamic Railway Information Management System (DRIMS) and TD3.8 Intelligent Asset Management Strategies (IAMS). These TDs will deploy an overall concept for Intelligent Asset Management based on the following three main interlinked layers: Measuring and Monitoring systems to collect data from the field related to the railway assets status: IN2SMART will develop unmanned systems for remote monitoring; track geometry, switches & crossings and signalling monitoring systems; innovative measurement of train parameters and wheel defects combined with rolling stock identifications systems. Data management, data mining and data analytics procedures to process data from the field and from other sources: IN2SMART will develop standard open interfaces to access heterogeneous maintenance-related data; analytic tools to automatic detect anomalies, discover and describe maintenance workflow processes and predict railway assets decay towards prescriptive maintenance. Degradation models and decision making tools to support maintenance strategies and execution: IN2SMART will lay the foundation of a generic framework for asset management and decision support process. This framework will specify the scope, objectives, workflow and outcomes of the decision-making process for maintenance interventions planning, and will be the enabler for the development of future decision support tools and systems. IN2SMART will also develop an optimised tamping tool and a robot platform for maintenance works. IN2SMART will complement the work of the IN2RAIL lighthouse project to reach a homogeneous TRL4/5 demonstrator. The following Grant will start from IN2SMART to reach the final Integrated Technology Demonstrators that will deploy the overall concept of Intelligent Asset Management.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP2-01-2015 | Award Amount: 19.97M | Year: 2016

X2Rail-1 addresses the S2R-CFM-IP2-01-2015 Start-up activities for Advanced Signalling and Automation System call issued by the Shift2Rail Joint Undertaking as part of the Innovation Programme 2 Advanced Traffic Management & Control Systems. The X2Rail-1 project aims to research and develop six selected key technologies to foster innovations in the field of railway signalling and automation systems towards a flexible, real-time, intelligent traffic management and decision support system. The actions to be undertaken in the scope of X2Rail-1 are related to the following specific objectives: To overcome the limitations of the existing communication systems by adapting radio communication systems which establish the backbone for the next generation advanced rail automation systems. To improve the usable track capacity by introducing more Automatic Train Operation (ATO) systems and Moving Block systems. To innovate the signalling architectures towards more decentralized and less cost intensive systems by incorporating Moving Block systems and Smart Wayside Objects. To minimize energy consumption and to improve train punctuality through more extensive use of Automatic Train Operation (ATO) systems. To increase innovation in the field of lab testing by developing architectures for new lab test systems and simulations for control, command and communication systems in order to reduce costs. To ensure security among all connected signalling and control systems by developing new cyber security systems dedicated to railways. To ensure the backward compatibility of ERMTS/ETCS technologies, notwithstanding of the required functional enrichment of the future signalling and control systems.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: GALILEO-1-2015 | Award Amount: 4.46M | Year: 2016

The STARS project paves the way for the future EGNSS deployment in safety relevant railway applications. By evolving the highly developed and deployed ERTMS standard through the implementation of the satellite positioning functionality, it will be possible to reduce the cost of the future railway signalling systems, especially for lines with lower traffic density. The project deals with three main topics: 1) The elaboration of reference data and characterisation of the railway environment through a measurement campaign; 2) The assessment of the EGNSS performances achievable in the railway environment with the determination of the applicable requirements for the positioning system as well as the necessary evolutions of EGNSS services and ERTMS/ETCS functions and 3) Quantification of the economic benefits and specifying the possible implementation roadmap when applying the EGNSS on railways. The project is strongly linked with other initiatives and actions on the same topic in Europe. In order to feed directly into the standardization work of ERTMS, the project partners will cooperate closely with UNISIG. Moreover, the project will actively interact with NGTC (EU funded FP7) and the results will be directly implemented by SHIFT2RAIL, providing the practical demonstrators for different categories of railway tracks. The approach developed in STARS is also taking the profit of the strong know-how inherited from civil aviation, making this project as completely integrated and consistent in overall activities in Europe and worldwide, leading to the effective deployment of the satellite technologies in advanced railway signalling systems.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP1-02-2016 | Award Amount: 5.91M | Year: 2016

CONNECTA aims at contributing to the S2Rs next generation of TCMS architectures and components with wireless capabilities as well as to the next generation of electronic braking systems. CONNECTA will conduct research into new technological concepts, standard specifications and architectures for train control and monitoring, with specific applications in train-to-ground communications and high safety electronic control of brakes. The specific actions to be undertaken within the scope of CONNECTA contributing to the S2R Multi-Annual Action Plan on TD1.2 and TD1.5 are: To develop the general specifications of next generation TCMS and to generate the corresponding high level system architecture; To incorporate wireless technologies to train communication network solutions; To provide a train-wide communication network for full TCMS support including the replacement of train lines, connecting safety functions up to SIL4 and support of fail-safe and fail-tolerant principles, to provide an optimal train network for TCMS & OMTS (Onboard Multimedia and Telematic Services) as well as communication mean for non-TCMS functions; To standardise functional interfaces of functions and sub systems as well as to define a generic functional architecture for the next TCMS generation; To facilitate the coupling of two or more consists supplied by different manufacturers and which could have different train functions; To develop a simulation framework in which all subsystems of the train can be simulated, allowing remote and distributed testing including hardware in-the-loop through heterogeneous communication networks; To achieve a performance improvement in safety relevant braking functions resulting in optimisation of the braking distances in safety braking; To optimise onboard systems by reducing the number of sophisticated pneumatic components and improving the overall LCC; To validate non-railway EN standards for use in safety-related railway applications.

Loading Ansaldo Energia collaborators
Loading Ansaldo Energia collaborators