Entity

Time filter

Source Type

Lund, Sweden

Nikodinovic-Runic J.,University of Belgrade | Guzik M.,Bioplastech | Kenny S.T.,Bioplastech | Babu R.,Trinity College Dublin | And 2 more authors.
Advances in Applied Microbiology | Year: 2013

Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show that biomass and PHA productivity can be increased, and sometimes dramatically, in a fermentor. The relevant application-specific properties of the polymers from the wastes studied and the effect of altered-waste composition on polymer properties are generally not well reported and would greatly benefit the progress of the research as high productivity is of limited value without the context of requisite case-specific polymer properties. The proposed use of a waste residual is advantageous from a life cycle viewpoint as it removes the direct or indirect effect of PHA production on land usage and food production. However, the question, of how economic drivers will promote or hinder advancements to demonstration scale, when wastes generally become understood as resources for a biobased society, hangs today in the balance due to a lack of shared vision and the legacy of mistakes made with first generation bioproducts. © 2013 Elsevier Inc. Source


Albuquerque M.G.E.,New University of Lisbon | Concas S.,New University of Lisbon | Bengtsson S.,AnoxKaldnes AB | Reis M.A.M.,New University of Lisbon
Bioresource Technology | Year: 2010

Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5 h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters. © 2010 Elsevier Ltd. All rights reserved. Source


Bengtsson S.,AnoxKaldnes AB | Pisco A.R.,REQUIMTE | Reis M.A.M.,REQUIMTE | Lemos P.C.,REQUIMTE
Journal of Biotechnology | Year: 2010

Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.47-0.66 C-mol PHA per C-mol of total carbon substrate and with rates up to 0.65 C-mol/C-mol X h. In order to investigate the role of glycogen during aerobic PHA accumulation in GAOs, synthetic single volatile fatty acids (VFAs) were used as substrates and it was found that the fate of glycogen was dependent on the type of VFA being consumed. Aerobic PHA accumulation occurred under concurrent glycogen consumption with acetate as substrate and under minor concurrent glycogen production with propionate as substrate. With butyrate and valerate as substrates, PHA accumulation occurred with the glycogen pool unaffected. The composition of the PHA was dependent on the VFA composition of the fermented molasses and was 56-70 mol-% 3HB, 13-43 mol-% 3HV, 1-23 mol-% 3HHx and 0-2 mol-% 3H2MB and 3H2MV. The high polymer yields and production rates suggest that enrichment of GAOs can be a fruitful strategy for mixed culture production of PHA from waste substrates. © 2009 Elsevier B.V. All rights reserved. Source


Christensso M.,AnoxKaldnes AB | Odegaard H.,Norwegian University of Science and Technology
Water Science and Technology | Year: 2011

A hybrid activated sludge/biofilm process was investigated for wastewater treatment in a cold climate region. This process, which contains both suspended biomass and biofilm, usually referred as IFAS process, is created by introducing plastic elements as biofilm carrier media into a conventional activated sludge reactor. In the present study, a hybrid process, composed of an activated sludge and a moving bed biofilm reactor was used. The aim of this paper has been to investigate the performances of a hybrid process, and in particular to gain insight the nitrification process, when operated at relatively low MLSS SRT and low temperatures. The results of a pilot-scale study carried out at the Department of Hydraulic and Environmental Engineering at the Norwegian University of Science and Technology in Trondheim are presented. The experimental campaign was divided into two periods. The pilot plant was first operated with a constant HRT of 4.5 hours, while in the second period the influent flow was increased so that HRT was 3.5 hours. The average temperature was near 11.51C in the overall experimental campaign. The average mixed liquor SRT was 5.7 days. Batch tests on both carriers and suspended biomass were performed in order to evaluate the nitrification rate of the two different biomasses. The results demonstrated that this kind of reactor can efficiently be used for the upgrading of conventional activated sludge plant for achieving year-round nitrification, also in presence of low temperatures, and without the need of additional volumes. © IWA Publishing 2011. Source


Di Trapani D.,University of Palermo | Christensson M.,AnoxKaldnes AB | Torregrossa M.,University of Palermo | Viviani G.,University of Palermo | Odegaard H.,Norwegian University of Science and Technology
Biochemical Engineering Journal | Year: 2013

The main aim of the study was to investigate a hybrid MBBR process, mostly in terms of organic matter removal and nitrification, when operating with different values of the mixed liquor sludge retention time (SRT), and highlighting the influence of temperature on the process. Based on experience in practice it was hypothesized that nitrification could be maintained at far lower SRT's than in conventional activated sludge systems and with high organic loading rates applied. A field gathering campaign has been carried out on a hybrid activated sludge/biofilm. The obtained results highlighted that the pilot plant was capable to remove the organic matter at loading rates up to 3.00kgTCODm-3day-1, also showing very high nitrification activity. Ammonia uptake rate (AUR) batch test showed that biofilm nitrification activity increased when the mixed liquor SRT decreased. The final suggestion is that it is possible to run a hybrid reactor with low mixed liquor SRT values, as well as low temperatures, still having a high ammonium removal efficiency, since a large fraction of nitrification activity will take place in the biofilm. © 2013 Elsevier B.V. Source

Discover hidden collaborations