Entity

Time filter

Source Type


Xing H.,Northeast Agricultural University | Xing H.,Animal Health Supervision Institute of Heilongjiang Province | Zhang Z.,Northeast Agricultural University | Yao H.,Northeast Agricultural University | And 4 more authors.
Chemosphere | Year: 2014

Atrazine (ATR) and chlorpyrifos (CPF), widely used in agriculture, have resulted in a series of toxicological and environmental problems. We investigated the activities of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and pentoxyresorufin-O-deethylase (PROD), total cytochrome P450 (CYP), CYP1A mRNA level and level of tissue ATR, CPF, and their metabolites in the liver of common carp (Cyprinus carpio L.) after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery. In the present study, juvenile common carp was exposed to ATR (at concentrations of 4.28, 42.8 and 428μgL-1), CPF (1.16, 11.6 and 116μgL-1), and ATR/CPF mixture (at concentrations of 1.13, 11.3 and 113μgL-1). A general increasing trend for the activity of the biotransformation enzymes (EROD and PROD), CYP and CYP1A mRNA level was observed in the liver of common carp exposed to ATR, CPF and the ATR/CPF mixture. In addition, ATR, CPF, and their metabolites demonstrated a high accumulation in the liver. These results demonstrated that the CYP system in fish could be used as a biomarkers in evaluating the impact of ATR and CPF exposure on the common carp. © 2014 Elsevier Ltd. Source


Fu Y.,Northeast Agricultural University | Li M.,Northeast Agricultural University | Li M.,Daqing Normal University | Liu C.,Northeast Agricultural University | And 5 more authors.
Ecotoxicology and Environmental Safety | Year: 2013

Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428. μg/L), CPF (1.16, 11.6 and 116. μg/L) or ATR-CPF mixture (1.13, 11.3 and 113. μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills. © 2013 Elsevier Inc. Source


Xing H.,Northeast Agricultural University | Xing H.,Animal Health Supervision Institute of Heilongjiang Province | Han Y.,Northeast Agricultural University | Li S.,Northeast Agricultural University | And 3 more authors.
Ecotoxicology and Environmental Safety | Year: 2010

The uses of pesticides and herbicides have become an integral part of modern agricultural systems. The intensive use of pesticides chlorpyrifos (CPF) and herbicides atrazine (ATR) has resulted in serious environmental problems. Herein, we have developed real-time quantitative polymerase chain reaction assays for common carp (Cyprinus carpio L.) mRNA. The levels of AChE mRNA were evaluated in brain and muscle collected from common carp by treatment of ATR, CPF, and their mixture. The decreased transcription of AChE was detected in both tissues at different doses of the toxicants in the end of exposure tests, and the changes were improved in the end of recovery tests in varying degrees. It is suggested that transcription inhibition of AChE might be significant in long-playing single or associated exposure of ATR and CPF in common carp. Alteration in transcription of AChE caused by ATR, CPF, and their mixture could reveal the toxic mechanisms related to cholinergic signaling. © 2010 Elsevier Inc. Source


Xing H.,Northeast Agricultural University | Xing H.,Animal Health Supervision Institute of Heilongjiang Province | Li S.,Northeast Agricultural University | Wang Z.,Animal Health Supervision Institute of Heilongjiang Province | And 3 more authors.
Pesticide Biochemistry and Physiology | Year: 2012

Atrazine (ATR) and chlorpyrifos (CPF) are the most common pesticides found in freshwater ecosystems throughout the world. Herein, we investigated the oxidative stress responses and histopathological changes in the liver and gill of common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery treatment. We found that exposure to ATR, CPF or their mixture for 40. d could induce decrease in antioxidant enzyme (SOD, CAT and GSH-Px) activities and increase in MDA content in a dose-dependent manner in the liver and gill of common carp. Especially with regard to the pathological changes, the tissue damage increased in severity in a dose-dependent manner. The liver tissue of common carp revealed different degree of hydropic degeneration, vacuolisation, pyknotic nuclei, and fatty infiltration. The gills of common carp displayed varied degrees of epithelial hypertrophy, telangiectasis, oedema with epithelial separation from basement membranes, general necrosis, and epithelial desquamation. After a 20-d recovery treatment, the antioxidant enzyme activities and MDA content were significantly lower (. p<. 0.05) than in the corresponding exposure groups in all of the highest doses, but not in the lower doses. To our knowledge, this is the first report of subchronic oxidative stress and histopathological effects caused by ATR, CPF and their mixture in the common carp. Thus, the information presented in this study is helpful to understand the mechanism of ATR-, CPF- and ATR/CPF-mixture-induced oxidative stress in fish. © 2012 Elsevier Inc. Source


Xing H.,Northeast Agricultural University | Xing H.,Animal Health Supervision Institute of Heilongjiang Province | Li S.,Northeast Agricultural University | Wang Z.,Animal Health Supervision Institute of Heilongjiang Province | And 3 more authors.
Chemosphere | Year: 2012

We investigated oxidative stress response and histopathological changes in the brain and kidney of the common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) content were measured using standard assays. Our results indicated that exposure to ATR, CPF or a combination of the two for 40. d induced significant changes in antioxidant enzyme (SOD, CAT and GSH-Px) activities and MDA content in the brain and kidney of the common carp. Pathological changes included tissue damage that was more severe with increased of exposure dose. To our knowledge, this is the first report to study oxidative stress and histopathological effects caused by subchronic exposure to ATR, CPF and ATR/CPF combination on common carp. The information presented in this study may be helpful to understanding the mechanisms of ATR-, CPF- and ATR/CPF combination-induced oxidative stress in fish. © 2012. Source

Discover hidden collaborations