Time filter

Source Type

Filho P.R.M.,Federal University of Rio Grande do Sul | Filho P.R.M.,Animal Experimentation Unit and Graduate Research Group | Vercelino R.,Federal University of Rio Grande do Sul | Vercelino R.,Animal Experimentation Unit and Graduate Research Group | And 19 more authors.
Progress in Neuro-Psychopharmacology and Biological Psychiatry | Year: 2016

Introduction: Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Objective: Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Methods: Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14. days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20. minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24. h (phase I) and 7. days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48. h (phase I) and 8. days (phase II) after tDCS treatment by ELISA. Results: The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, P<. 0.05 for all). The tDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, P<. 0.05 for all). Furthermore, the tDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, P<. 0.05). Conclusion: tDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels in different regions of the central nervous system (CNS), and this effect can be attributed to different cellular signaling activations. © 2015 Elsevier Inc.

De Oliveira C.,Grande Rio University | De Oliveira C.,Federal University of Rio Grande do Sul | De Oliveira C.,Animal Experimentation Unit and Graduate Research Group | Scarabelot V.L.,Grande Rio University | And 23 more authors.
Peptides | Year: 2014

Disruption of the circadian system can lead to metabolic dysfunction as a response to environmental alterations. This study assessed the effects of the association between obesity and chronic stress on the temporal pattern of serum levels of adipogenic markers and corticosterone in rats. We evaluated weekly weight, delta weight, Lee index, and weight fractions of adipose tissue (mesenteric, MAT; subcutaneous, SAT; and pericardial, PAT) to control for hypercaloric diet-induced obesity model efficacy. Wistar rats were divided into four groups: standard chow (C), hypercaloric diet (HD), stress plus standard chow (S), and stress plus hypercaloric diet (SHD), and analyzed at three time points: ZT0, ZT12, and ZT18. Stressed animals were subjected to chronic stress for 1 h per day, 5 days per week, during 80 days. The chronic exposure to a hypercaloric diet was an effective model for the induction of obesity and metabolic syndrome, increasing delta weight, Lee index, weight fractions of adipose tissue, and triglycerides and leptin levels. We confirmed the presence of a temporal pattern in the release of triglycerides, corticosterone, leptin, and adiponectin in naïve animals. Chronic stress reduced delta weight, MAT weight, and levels of triglycerides, total cholesterol, and leptin. There were interactions between chronic stress and obesity and serum total cholesterol levels, between time points and obesity and adiponectin and corticosterone levels, and between time points and chronic stress and serum leptin levels. In conclusion, both parameters were able to desynchronize the temporal pattern of leptin and triglyceride release, which could contribute to the development of metabolic diseases such as obesity and metabolic syndrome. © 2013 Elsevier Inc. All rights reserved.

Leffa D.T.,Federal University of Rio Grande do Sul | Leffa D.T.,Animal Experimentation Unit and Graduate Research Group | de Souza A.,Animal Experimentation Unit and Graduate Research Group | de Souza A.,Federal University of Rio Grande do Sul | And 13 more authors.
European Neuropsychopharmacology | Year: 2016

Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals. © 2016 Published by Elsevier B.V.

Spezia Adachi L.N.,Federal University of Rio Grande do Sul | Spezia Adachi L.N.,Animal Experimentation Unit and Graduate Research Group | Caumo W.,Federal University of Rio Grande do Sul | Laste G.,Federal University of Rio Grande do Sul | And 10 more authors.
Brain Research | Year: 2012

Transcranial direct current stimulation (tDCS) has been suggested as a therapeutic tool for pain syndromes. Although initial results in human subjects are encouraging, it still remains unclear whether the effects of tDCS can reverse maladaptive plasticity associated with chronic pain. To investigate this question, we tested whether tDCS can reverse the specific behavioral effects of chronic stress in the pain system, and also those indexed by corticosterone and interleukin-1β levels in serum and TNFα levels in the hippocampus, in a well-controlled rat model of chronic restraint stress (CRS). Forty-one adult male Wistar rats were divided into two groups control and stress. The stress group was exposed to CRS for 11 weeks for the establishment of hyperalgesia and mechanical allodynia as shown by the hot plate and von Frey tests, respectively. Rats were then divided into four groups control, stress, stress+sham tDCS and stress+tDCS. Anodal or sham tDCS was applied for 20 min/day over 8 days and the tests were repeated. Then, the animals were killed, blood collected and hippocampus removed for ELISA testing. This model of CRS proved effective to induce chronic pain, as the animals exhibited hyperalgesia and mechanical allodynia. The hot plate test showed an analgesic effect, and the von Frey test, an anti-allodynic effect after the last tDCS session, and there was a significant decrease in hippocampal TNFα levels. These results support the notion that tDCS reverses the detrimental effects of chronic stress on the pain system and decreases TNFα levels in the hippocampus. © 2012 Elsevier B.V.

Spezia Adachi L.N.,Federal University of Rio Grande do Sul | Spezia Adachi L.N.,Animal Experimentation Unit and Graduate Research Group | Quevedo A.S.,Federal University of Rio Grande do Sul | de Souza A.,Federal University of Rio Grande do Sul | And 15 more authors.
Experimental Brain Research | Year: 2015

Physiological and exogenous factors are able to adjust sensory processing by modulating activity at different levels of the nervous system hierarchy. Accordingly, transcranial direct current stimulation (tDCS) may use top-down mechanisms to control the access for incoming information along the neuroaxis. To test the hypothesis that brain activation induced by tCDS is able to initiate top-down modulation and that chronic stress disrupts this effect, 60-day-old male Wistar rats (n = 78) were divided into control; control + tDCS; control + sham-tDCS; stress; stress + tDCS; and stress + sham-tDCS. Chronic stress was induced using a restraint stress model for 11 weeks, and then, the treatment was applied over 8 days. BDNF levels were used to assess neuronal activity at spinal cord, brainstem, and hippocampus. Mechanical pain threshold was assessed by von Frey test immediately and 24 h after the last tDCS-intervention. tDCS was able to decrease BDNF levels in the structures involved in the descending systems (spinal cord and brainstem) only in unstressed animals. The treatment was able to reverse the stress-induced allodynia and to increase the pain threshold in unstressed animals. Furthermore, there was an inverse relation between pain sensitivity and spinal cord BDNF levels. Accordingly, we propose the addition of descending systems in the current brain electrical modulation model. © 2015, Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations