Animal Cell Technology Laboratory

Oeiras, Portugal

Animal Cell Technology Laboratory

Oeiras, Portugal
SEARCH FILTERS
Time filter
Source Type

Tostoes R.M.,Animal Cell Technology Laboratory | Leite S.B.,Animal Cell Technology Laboratory | Miranda J.P.,Animal Cell Technology Laboratory | Miranda J.P.,University of Lisbon | And 5 more authors.
Biotechnology and Bioengineering | Year: 2011

Long-term primary cultures of hepatocytes are essential for bioartificial liver (BAL) devices and to reduce and replace animal tests in lead candidate optimization in drug discovery and toxicology tests. The aim of this work was to improve bioreactor cultures of hepatocyte spheroids by adding a more physiological perfusion feeding regime to these bioreactor systems. A continuous perfusion feeding was compared with 50% medium replacement (routinely used for in vitro tests) at the same dilution rate, 0.125 day-1, for three operative weeks. Perfusion feeding led to a 10-fold improvement in albumin synthesis in bioreactors containing non-encapsulated hepatocyte spheroids; no significant improvement was observed in phase I drug metabolizing activity. When ultra high viscous alginate encapsulated spheroids were cultured in perfusion, urea synthesis, phase I drug metabolizing activity and oxygen consumption had a threefold improvement over the 50% medium replacement regime; albumin production was the same for both feeding regimes. The effective diffusion of albumin in the alginate capsules was 7.75.10-9 cm2 s-1 and no diffusion limitation for this protein was observed using these alginate capsules under our operational conditions. In conclusion, perfusion feeding coupled with alginate encapsulation of hepatocyte spheroids showed a synergistic effect with a threefold improvement in three independent liver-specific functions of long-term hepatocyte spheroid cultures. © 2010 Wiley Periodicals, Inc.


Cruz P.E.,Animal Cell Technology Laboratory
Methods in molecular biology (Clifton, N.J.) | Year: 2011

Retrovirus vectors derived from moloney murine leukemia virus (MoMLV) were the first class of viral vectors developed for gene therapy. They have been extensively used in clinical trials, particularly in ex vivo transduction of hematopoietic stem cells. Although there is a vast experience acquired with retroviruses, their manufacturing is still a difficult task due to the low cell productivities and inherent instability of the infective virus. These viral vectors are most commonly produced using stable producer cell lines in adherent monolayer culture systems. In order to obtain high transduction efficiencies and low toxicity in clinical applications, the viral preparations should be purified, concentrated, and well characterized to attain stringent quality specifications. This chapter describes currently used protocols for manufacturing retroviruses.


PubMed | Animal Cell Technology Laboratory
Type: Journal Article | Journal: Biotechnology and bioengineering | Year: 2010

Long-term primary cultures of hepatocytes are essential for bioartificial liver (BAL) devices and to reduce and replace animal tests in lead candidate optimization in drug discovery and toxicology tests. The aim of this work was to improve bioreactor cultures of hepatocyte spheroids by adding a more physiological perfusion feeding regime to these bioreactor systems. A continuous perfusion feeding was compared with 50% medium replacement (routinely used for in vitro tests) at the same dilution rate, 0.125 day(-1), for three operative weeks. Perfusion feeding led to a 10-fold improvement in albumin synthesis in bioreactors containing non-encapsulated hepatocyte spheroids; no significant improvement was observed in phase I drug metabolizing activity. When ultra high viscous alginate encapsulated spheroids were cultured in perfusion, urea synthesis, phase I drug metabolizing activity and oxygen consumption had a threefold improvement over the 50% medium replacement regime; albumin production was the same for both feeding regimes. The effective diffusion of albumin in the alginate capsules was 7.75.10(-9) cm(2) s(-1) and no diffusion limitation for this protein was observed using these alginate capsules under our operational conditions. In conclusion, perfusion feeding coupled with alginate encapsulation of hepatocyte spheroids showed a synergistic effect with a threefold improvement in three independent liver-specific functions of long-term hepatocyte spheroid cultures.


PubMed | Animal Cell Technology Laboratory
Type: Evaluation Studies | Journal: Tissue engineering. Part C, Methods | Year: 2010

The maintenance of differentiated hepatocyte phenotype in vitro depends on several factors-in particular, on extracellular matrix interactions, for example, with three-dimensional (3D) matrices. Alginate hydrogel provides the cells with a good extracellular matrix due to the formation of a massive capsule with semi-permeable properties that allows for diffusion of the medium components into the cells as well as efficient waste product elimination. Simultaneously, alginate protects the cells from shear stress caused by the hydrodynamics when cultured in stirred systems such as bioreactors. We have previously developed a hepatocyte aggregate 3D culture system in a bioreactor where improved hepatocyte functionality could be maintained over longer periods (21 days). In this work, ultra-high-viscosity alginate was used for hepatocyte aggregates entrapment. Hepatocyte biotransformation (phase I and II enzymes), CYP450 inducibility, and secretory capacity (albumin and urea production) were monitored. The analyses were performed in both spinner vessels and bioreactors to test the effect of the pO(2) control, unavailable in the spinners. Performance of alginate-encapsulated hepatocyte aggregates in culture was compared with nonencapsulated aggregate cultures in both bioreactor (controlled environment) and spinner vessels. For both culture systems, hepatocytes metabolic and biotransformation capacities were maintained for up to 1 month, and encapsulated cells in bioreactors showed the best performance. In particular, albumin production rate increased 2- and 1.5-fold in encapsulated aggregates compared with nonencapsulated aggregates in bioreactor and spinner vessels, respectively. Urea production rate increased twofold in encapsulated cultures compared with nonencapsulated cells, in both bioreactor and spinner vessels. Similarly, in both the bioreactor and the spinner system, cell encapsulation resulted in a 1.5- and 2.8-fold improvement of hepatocyte 7-ethoxycoumarin and uridine diphosphate glucuronosyltransferases (UGT) activities, respectively. For all parameters, but for UGT activity, the bioreactor system resulted better than the spinner vessels; for UGT activity no difference was observed between the two. Furthermore, both encapsulated and nonencapsulated 3D culture systems were inducible by 3-methylcholanthrene and dexamethasone. The encapsulated systems consistently showed improved performance over the nonencapsulated cells, indicating that the protection conferred by the alginate matrix plays a relevant role in maintaining the hepatocyte functionalities in vitro.

Loading Animal Cell Technology Laboratory collaborators
Loading Animal Cell Technology Laboratory collaborators