Entity

Time filter

Source Type

Edinburgh, United Kingdom

Prebble J.L.,Roslin Institute | Prebble J.L.,Bryan College | Langford F.M.,Animal and Veterinary science | Shaw D.J.,Roslin Institute | Meredith A.L.,Roslin Institute
Applied Animal Behaviour Science | Year: 2015

Dietary composition and presentation impacts on the behaviour of animals, and failure to provide a suitable diet can lead to reduced welfare through the development of poor health, the inability to express normal behaviours and the development of abnormal behaviours. This study assessed the effects of two commonly fed pet rabbit diets (extruded nuggets with hay (EH) and muesli with hay (MH)) alongside hay only (HO) and muesli only (MO) on the behaviour of 32 Dutch rabbits observed over 17 months. Increased time spent feeding was observed in the groups fed ad libitum hay (HO, EH, MH) compared to the MO group (P <. 0.05). A corresponding high level of inactivity was observed in the MO group compared to rabbits receiving hay (P <. 0.05). In the groups provided with hay a preference to consume hay in a natural grazing posture was observed. The higher activity levels and absence of abnormal behaviours when hay was fed support recommendations that forage should form a significant portion of the diet for domestic rabbits. © 2015 Elsevier B.V. Source


Lv S.-J.,Shandong University | Yang Y.,Linyi Agriculture Science Institute | Dwyer C.M.,Animal and Veterinary science | Li F.-K.,Shandong University
Animal | Year: 2015

The aim of this experiment was to study the effects of pen size and parity on maternal behaviour of twin-bearing Small-Tail Han ewes. A total of 24 ewes were allocated to a 2×2 design (six per pen), with parity (primiparous or multiparous) and pen size (large: 6.0×3.0 m; small: 6.0×1.5 m) as main effects at Linyi University, Shandong Province, China. Behaviour was observed from after parturition until weaning. All ewes were observed for 6 h every 5 days from 0700 to1000 h and from 1400 to 1700 h. Continuous focal animal sampling was used to quantify the duration of maternal behaviours: sucking, grooming and following as well as the frequency of udder accepting, udder refusing and low-pitched bleating. Oestradiol and cortisol concentrations in the faeces (collected in the morning every 5 days) were detected using EIA kits. All lambs were weighed 24 h after parturition and again at weaning at 35 days of age. The small pen size significantly reduced following (P<0.005), grooming (P<0.001) and suckling durations (P<0.05), as well as the frequency of udder refusals (P<0.001). However, there was a significant interaction with ewe parity, with decreased grooming and suckling in the small pen largely seen in the multiparous ewes (P<0.001). Independent of pen size, multiparous ewes accepted more sucking attempts by their lambs (P<0.05) and made more low-pitched bleats than primiparous ewes (P<0.001). Multiparous ewes had higher faecal oestradiol concentrations than primiparous ewes (P<0.001), and ewes in small pens had higher faecal cortisol levels compared with ewes in larger pens (P<0.001). As lambs increased in age, the duration of maternal grooming, following and suckling as well as frequency of udder acceptance and low-pitched bleating all declined, and the frequency of udder refusing increased (P<0.001 for all). Ewe parity, but not pen size, affected lamb weight gain during the period of observation (P<0.001). This is the first study to show that pen size, interacting with parity, can affect the expression of maternal behaviour in sheep during lactation. The study is also the first to report on the maternal behaviour of Chinese native sheep breeds (Small-Tail Han sheep), with implications for the production of sheep in China. © The Animal Consortium 2015. Source


Langford F.M.,Animal and Veterinary science | Stott A.W.,Land economics and Environment
Animal Welfare | Year: 2012

Involuntary culling (IC) is where a cow is disposed of due to injury, poor health or infertility. The main reasons for IC are infertility, mastitis and lameness. These reasons have differing age profiles in when they affect cows, cost variable amounts to treat and have an effect on the value of the cow at market. They also reduce cow welfare in different ways. These factors influence the economically optimum cow replacement decision, which must balance the risks of future loss from the current cow against its future prospects and the net costs of a replacement. So the farmer's economic decision as to when to cull a cow may not occur at the same time as when the cow could, and sometimes should, be culled to maximise her welfare. To explore this dilemma, we developed a Dynamic Programme (DP) model to assess the optimum replacement policies for each of 180 possible cow states (12 parities and 15 milkyield levels) under a simplified set of alternative husbandry systems and remedial practices. The DP was used to explore the relationships between financial outcomes, investment in improving welfare, lifespan and IC in dairy systems. There is a trade-off between dairy cattle lifespan and risk of suffering over which farmers have some control by the replacement and investment decisions they make. Our results show that improving cow welfare by reducing mastitis, lameness or infertility over the long term increases the mean longevity of the herd and also reduces the potential of long-term suffering resulting from chronic conditions. Additionally, it has the effect of increasing replacement opportunities and the annuities for each cow (£ per cow per year) mainly by increasing milk yield and reducing costly on-farm culls, creating a win-win situation for both farmer and cow. Source


Berry D.P.,Teagasc | Wall E.,Animal and Veterinary science | Pryce J.E.,La Trobe University
Animal | Year: 2014

Excellent reproductive performance in both males and females is fundamental to profitable dairy and beef production systems. In this review we undertook a meta-analysis of genetic parameters for female reproductive performance across 55 dairy studies or populations and 12 beef studies or populations as well as across 28 different studies or populations for male reproductive performance. A plethora of reproductive phenotypes exist in dairy and beef cattle and a meta-analysis of the literature suggests that most of the female reproductive traits in dairy and beef cattle tend to be lowly heritable (0.02 to 0.04). Reproductive-related phenotypes in male animals (e.g. semen quality) tend to be more heritable than female reproductive phenotypes with mean heritability estimates of between 0.05 and 0.22 for semen-related traits with the exception of scrotal circumference (0.42) and field non-return rate (0.001). The low heritability of reproductive traits, in females in particular, does not however imply that genetic selection cannot alter phenotypic performance as evidenced by the decline until recently in dairy cow reproductive performance attributable in part to aggressive selection for increased milk production. Moreover, the antagonistic genetic correlations among reproductive traits and both milk (dairy cattle) and meat (beef cattle) yield is not unity thereby implying that simultaneous genetic selection for both increased (milk and meat) yield and reproductive performance is indeed possible. The required emphasis on reproductive traits within a breeding goal to halt deterioration will vary based on the underlying assumptions and is discussed using examples for Ireland, the United Kingdom and Australia as well as quantifying the impact on genetic gain for milk production. Advancements in genomic technologies can aid in increasing the accuracy of selection for especially reproductive traits and thus genetic gain. Elucidation of the underlying genomic mechanisms for reproduction could also aid in resolving genetic antagonisms. Past breeding programmes have contributed to the deterioration in reproductive performance of dairy and beef cattle. The tools now exist, however, to reverse the genetic trends in reproductive performance underlying the observed phenotypic trends. © 2014 The Animal Consortium. Source


Shirali M.,Animal and Veterinary science | Shirali M.,Wageningen University | Duthie C.-A.,Future Farming Systems | Doeschl-Wilson A.,Roslin Institute | And 4 more authors.
BMC Genetics | Year: 2013

Background: Improvement of feed efficiency in pigs is of great economical and environmental interest and contributes to use limited resources efficiently to feed the world population. Genome scans for feed efficiency traits are of importance to reveal the underlying biological causes and increase the rate of genetic gain. The aim of this study was to determine the genomic architecture of feed efficiency measured by residual energy intake (REI), in association with production, feed conversion ratio (FCR) and nitrogen excretion traits through the identification of quantitative trait loci (QTL) at different stages of growth using a three generation full-sib design population which originated from a cross between Pietrain and a commercial dam line.Results: Six novel QTL for REI were detected explaining 2.7-6.1% of the phenotypic variance in REI. At growth from 60-90 kg body weight (BW), a QTL with a significant dominance effect was identified for REI on SSC14, at a similar location to the QTL for feed intake and nitrogen excretion traits. At growth from 90-120 kg BW, three QTL for REI were detected on SSC2, SSC4 and SSC7 with significant additive, imprinting and additive effects, respectively. These QTL (except for the imprinted QTL) were positionally overlapping with QTL for FCR and nitrogen excretion traits. During final growth (120-140 kg BW), a further QTL for REI was identified on SSC8 with significant additive effect, which overlapped with QTL for nitrogen excretion. During entire analysed growth (60-140 kg BW), a novel additive QTL for REI on SSC4 was observed, with no overlapping with QTL for any other traits considered.Conclusions: The occurrence of only one overlapping QTL of REI with feed intake suggests that only a small proportion of the variance in REI was explained by change in feed intake, whereas four overlapping QTL of REI with those of nitrogen excretion traits suggests that mostly underlying factors of feed utilisation such as metabolism and protein turnover were the reason for change in REI. Different QTL for REI were identified at different growth stages, indicating that different genes are responsible for efficiency in feed utilisation at different stages of growth. © 2013 Shirali et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations