Time filter

Source Type

Gao R.,China Agricultural University | Gao R.,Animal and Plant Inspection and Quarantine Technology Center | Gao R.,Alien Technology | Zhang G.,Animal and Plant Inspection and Quarantine Technology Center | Zhang G.,Alien Technology

The detection of live quarantine pathogenic fungi plays an important role in guaranteeing regional biological safety. DNA barcoding, an emerging species identification technology, holds promise for the reliable, quick, and accurate detection of quarantine fungi. International standards for phytosanitary guidelines are urgently needed. The varieties of quarantine fungi listed for seven countries/regions, the currently applied detection methods, and the status of DNA barcoding for detecting quarantine fungi are summarized in this study. Two approaches have been proposed to apply DNA barcoding to fungal quarantine procedures: (i) to verify the reliability of known internal transcribed spacer (ITS)/cytochrome c oxidase subunit I (COI) data for use as barcodes, and (ii) to determine other barcodes for species that cannot be identified by ITS/COI. As a unique, standardizable, and universal species identification tool, DNA barcoding offers great potential for integrating detection methods used in various countries/regions and establishing international detection standards based on accepted DNA barcodes. Through international collaboration, interstate disputes can be eased and many problems related to routine quarantine detection methods can be solved for global trade. © 2013 The American Phytopathological Society. Source

Zhang J.X.,Guangdong Academy of Agricultural Sciences | Lin B.R.,Guangdong Academy of Agricultural Sciences | Shen H.F.,Guangdong Academy of Agricultural Sciences | Pu X.M.,Guangdong Academy of Agricultural Sciences | And 2 more authors.
Plant Disease

Potato (Solanum tuberosum L.) is a major crop in China, with 80.0 million tons being produced in 2010 on 3.3 million ha. Pectobacterium carotovorum subsp. carotovorum Jones 1901; Hauben et al. 1999 causes soft rot worldwide on a wide range of hosts including potato, carrot, and cabbage. During spring 2010, a soft rot with a foul smell was noted in stored potato tubers of different cultivars in the Guangdong Province. Symptoms on tubers appeared as tan, water-soaked areas with watery ooze. The rotted tissues were white to cream colored. Stems of infected plants with typical inky black symptoms could also be found in the fields prior to harvest. Three different potato fields were surveyed, and 13% of the plants had the symptoms. Twenty-seven samples (three symptomatic tubers per sample) were collected. Bacteria were successfully isolated from all diseased tissues on nutrient agar media supplemented with 5% sucrose and incubated at 26 ± 1°C for 36 h. After purification on tripticase soy agar media, four typical strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) were identified using the following deterministic tests: gram-negative rods, oxidase negative, facultatively anaerobic, able to degrade pectate, sensitive to erythromycin, negative for phosphatase, unable to produce acid from?-methyl-glucoside, and produced acid from trehalose. Biolog analysis (Ver 4.20.05, Hayward, CA) identified the strains as P. carotovorum subsp. carotovorum (SIM 0.808, 0.774, 0.782, and 0.786, respectively). The identity of strains 7-3-1 (GenBank Accession No. JX258132), 7-3-2 (JX258133), and 8-3-1 (JX196705) was confirmed by 16S rRNA gene sequencing (4), since they had 99% sequence identity with other P. carotovorum subsp. carotovorum strains (GenBank Accession Nos. JF926744 and JF926758) using BLASTn. Further genetic analysis of strain 8-3-1 was performed targeting informative housekeeping genes, i.e., acnA (GenBank Accession No. JX196704), gabA (JX196706), icdA (JX196707), mdh (JX196708), mtlD (JX196709), pgi (JX196710), and proA (JX196711) (2). These sequences from strain 8-3-1 were 99 to 100%, homologous to sequences of multiple strains of P. carotovorum subsp. carotovorum. Therefore, strain 8-3-1 grouped with P. carotovorum subsp. carotovorum on the phylogenetic trees (neighbor-joining method, 1,000 bootstrap values) of seven concatenated housekeeping genes when compared with 60 other strains, including Pectobacterium spp. and Dickeya spp. (3). Pathogenicity of four strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) was evaluated by depositing a bacterial suspension (106 CFU/ml) on the potato slices of cultivar 'Favorita' and incubating at 30 ± 1°C. Slices inoculated with just water served as non-inoculated checks. The strains caused soft rot within 72 h and the checks had no rot. Bacteria were reisolated from the slices and were shown to be identical to the original strains based on morphological, cultural, and biochemical tests. Although this pathogen has already been reported in northern China (1), to our knowledge, this is the first report of P. carotovorum subsp. carotovorum causing bacterial soft rot of potato in Guangdong Province of China. Source

Kan S.,Jilin University | Kan S.,Academy of Military Medical science of PLA | Wang Y.,Jilin University | Wang Y.,Academy of Military Medical science of PLA | And 22 more authors.

Vaccinia Tian Tan (VTT) was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP) flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines. © 2012 Kan et al. Source

Feng J.J.,Animal and Plant Inspection and Quarantine Technology Center | Feng J.J.,China Agricultural University | Feng J.J.,Shenzhen Key Laboratory of Inspection Research and Development of Alien Pests | Li J.Q.,China Agricultural University | And 9 more authors.
Seed Science and Technology

Acidovorax citrulli, the causal agent of a bacterial seedling blight and fruit blotch (BFB), has received considerable attention since its first appearance in commercial watermelon production areas in the United States 89. Subsequently, it has emerged as a serious pathogen of cucurbitaceous plant species worldwide. In the major cucurbit producing countries of the world, great emphasis has been placed on managing this potentially devastating disease. Thus far, the most effective strategy for BFB management has been exclusion, which relies heavily on rapid and reliable pathogen detection. This review summarises recent progress in the development of A. citrulli detection techniques and evaluates their effectiveness as it pertains to BFB management. Source

Discover hidden collaborations