Time filter

Source Type

Beltsville, MD, United States

Liu Q.,Institute of Military Veterinary | Tuo W.,Animal and Natural Resources Institute | Gao H.,Institute of Military Veterinary | Zhu X.-Q.,Lanzhou Veterinary Research Institute
Parasitology Research | Year: 2010

MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs regulating gene expression in eukaryotes at the post-transcriptional level. The complex life cycles of parasites may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expression. Over the past 17 years, thousands of miRNAs have been identified in the nematode Caenorhabditis elegans and other parasites. Here, we review the current status and potential functions of miRNAs in protozoan, helminths, and arthropods, and propose some perspectives for future studies. © 2010 Springer-Verlag. Source

Dubey J.P.,Animal and Natural Resources Institute | Yabsley M.J.,University of Georgia
Parasitology | Year: 2010

Certain species of the protozoan genus Besnoitia cause clinical disease in livestock and wildlife. In the present paper a new species, Besnoitia neotomofelis is described from the southern planes woodrat (Neotoma micropus). The parasite was detected by bioassay of woodrat tissues in outbred Swiss Webster mice in an attempt to isolate Toxoplasma gondii. Initially, the organism was misdiagnosed as T. gondii because it was highly pathogenic for mice and its tachyzoites resembled T. gondii tachyzoites. Further studies revealed that it differed structurally and biologically from T. gondii. Tachyzoites were successfully cultivated and maintained in vitro in bovine monocytes and African green monkey kidney cells, and in vivo in mice. Non-dividing, uninucleate tachyzoites were approximately 15 m in size. Longitudinally-cut bradyzoites in tissue sections measured 15-1677-93 m. Tissue cysts were microscopic, up to 210 m long, and were infective orally to mice. Cats fed tissue cysts shed unsporulated 1314 m sized oocysts. All mice inoculated with B. neotomofelis died of acute besnoitiosis, irrespective of the dose, and Norwegian rats became infected but remained asymptomatic. Entero-epithelial stages (schizonts, gamonts) were found in cats fed tissue cysts. Large (up to 4050 m) first-generation schizonts developed in the lamina propria of the small intestine of cats. A second generation of small sized (8 m) schizonts containing 4-8 merozoites was detected in enterocytes of the small intestine. Gamonts and oocysts were seen in goblet cells of the small intestinal epithelium. Tachyzoites were present in mesenteric lymph nodes of cats. Phylogenetic analysis indicated that B. neotomofelis was related to other Besnoitia species from rodents, rabbits, and opossums. Besnoitia neotomofelis is distinct from the 3 other species of Besnoitia, B. wallacei, B. darlingi and B. oryctofelisi that utilize cats as a definitive host. © Cambridge University Press 2010. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Source

Min W.,Gyeongsang National University | Kim W.H.,Gyeongsang National University | Lillehoj E.P.,University of Maryland, Baltimore | Lillehoj H.S.,Animal and Natural Resources Institute
Developmental and Comparative Immunology | Year: 2013

The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis. © 2013. Source

Leary D.H.,U.S. Naval Academy | Hervey W.J.,U.S. Naval Academy | Li R.W.,Animal and Natural Resources Institute | Deschamps J.R.,Center for Bio Molecular Science and Engineering | And 2 more authors.
Analytical Chemistry | Year: 2012

The large-scale identification and quantitation of proteins via nanoliquid chromatography (LC)-tandem mass spectrometry (MS/MS) offers a unique opportunity to gain unprecedented insight into the microbial composition and biomolecular activity of true environmental samples. However, in order to realize this potential for marine biofilms, new methods of protein extraction must be developed as many compounds naturally present in biofilms are known to interfere with common proteomic manipulations and LC-MS/MS techniques. In this study, we used amino acid analyses (AAA) and LC-MS/MS to compare the efficacy of three sample preparation methods [6 M guanidine hydrochloride (GuHCl) protein extraction + in-solution digestion + 2D LC; sodium dodecyl sulfate (SDS) protein extraction + 1D gel LC; phenol protein extraction + 1D gel LC] for the metaproteomic analyses of an environmental marine biofilm. The AAA demonstrated that proteins constitute 1.24% of the biofilm wet weight and that the compared methods varied in their protein extraction efficiencies (0.85-15.15%). Subsequent LC-MS/MS analyses revealed that the GuHCl method resulted in the greatest number of proteins identified by one or more peptides whereas the phenol method provided the greatest sequence coverage of identified proteins. As expected, metagenomic sequencing of the same biofilm sample enabled the creation of a searchable database that increased the number of protein identifications by 48.7% (≥1 peptide) or 54.7% (≥2 peptides) when compared to SwissProt database identifications. Taken together, our results provide methods and evidence-based recommendations to consider for qualitative or quantitative biofilm metaproteome experimental design. © 2012 American Chemical Society. Source

Richards M.P.,Animal and Natural Resources Institute | McMurtry J.P.,Animal and Natural Resources Institute
International Journal of Peptides | Year: 2010

To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction require detailed knowledge of the structure and function of the components that comprise this system. These include the preproghrelin gene that encodes the proghrelin precursor protein from which two peptide hormones, ghrelin and obestatin, are derived and the cognate receptors that bind proghrelin-derived peptides to mediate their physiological actions in different tissues. Also key to the functioning of this system is the posttranslational processing of the proghrelin precursor protein and the individual peptides derived from it. While this system has been intensively studied in a variety of animal species and humans over the last decade, there has been considerably less investigation of the avian proghrelin system which exhibits some unique differences compared to mammals. This review summarizes what is currently known about the proghrelin system in birds and offers new insights into the nature and function of this important endocrine system. Such information facilitates cross-species comparisons and contributes to our understanding of the evolution of the proghrelin system. Copyright © 2010 M. P. Richards and J. P. McMurtry. Source

Discover hidden collaborations