Anhui Province Key Laboratory of Brain Function and Brain Disease

Hefei, China

Anhui Province Key Laboratory of Brain Function and Brain Disease

Hefei, China

Time filter

Source Type

Niu C.S.,Anhui Provincial Hospital | Niu C.S.,Anhui Province Key Laboratory of Brain Function and Brain Disease | Niu C.S.,Anhui Provincial Stereotactic Neurosurgical Institute | Yang Y.,Anhui Provincial Hospital | And 3 more authors.
International Journal of Oncology | Year: 2013

MiR-134 is a brain-enriched miRNA that plays an essential role in the development of the embryonic stem cell-orientated differentiation to central nervous system by suppression of Nanog and neural development (including neurons, cylindraxile and dendrites) and has been shown to be downregulated in oligodendrogliomas (ODG) and glioblastomas (GBM), suggesting its possible involvement in brain tumor progression. In this study, we defined the expression and function of miR-134, which we found to be downregulated in glioma samples and the glioblastoma cell line U87 by SYBR green real-time quantitative reverse transcription-PCR (real-time PCR). Early reports have characterized Nanog as a direct target of miR-134 by a dual-luciferase reporter assay in 293T cells. In our study, overexpression of miR-134 in U87 glioblastoma cells resulted in significant downregulation of Nanog mRNA levels as well as protein levels. miR-134 overexpression reduced the proliferation, invasiveness and migration capability of U87 cells while promoted apoptosis of these cells in vitro and suppressed the growth of tumor xenografts in vivo. These findings demonstrated that miR-134 deregulation is common in human gliomas. Restoration of its function inhibits cell proliferation, invasion and migration capability and promotes apoptosis, which could be partly due to its inhibitory effect on Nanog protein expression in glioblastoma cells. MiR-134 could play an important role as a tumor suppressor relying on its direct translational attenuation of Nanog.


Yang Y.,Anhui Medical University | Yang Y.,Anhui Province Key Laboratory of Brain Function and Brain Disease | Niu C.-S.,Anhui Medical University | Niu C.-S.,Anhui Province Key Laboratory of Brain Function and Brain Disease | And 3 more authors.
Oncology Reports | Year: 2013

The stemness gene Nanog has been shown to play an important role in tumor development, including glioma. Nanog is phosphorylated at multiple Ser/Thr-Pro motifs, which promotes the interaction between Nanog and the prolyl isomerase Pin1, leading to Nanog stabilization by suppressing its ubiquitination. The present study investigated the expres sion and relationship of Pin1 and Nanog in human gliomas. Significantly higher mRNA and protein expression levels of Pin1 and Nanog were demonstrated in 120 glioma specimens of different pathological grades by RT-PCR, immunohis tochemistry staining and western blot analysis. The relative levels of Pin1 expression, as well as Nanog expression, were significantly positively correlated with pathological grade. Moreover, a positive correlation of Pin1 and Nanog expres sion in human gliomas was noted. Co-localization of Pin1 and Nanog was observed in the perinuclear space in the cytoplasm of glioma cells detected by immunofluorescence staining. Significantly positive correlation between Pin1 and Nanog in gliomas indicated that Pin1 and Nanog may be related to tumorigenesis and development of glioma cells.


Cheng C.,Anhui Medical University | Cheng C.,Anhui Provincial Stereotactic Neurosurgical Institute | Cheng C.,Anhui Province Key Laboratory of Brain Function and Brain Disease | Niu C.,Anhui Medical University | And 5 more authors.
Oncology Reports | Year: 2013

The human herpesvirus-associated ubiquitin-specific protease (HAUSP) deubiquitinating enzyme has been shown to regulate many proteins involved in the cell cycle, as well as tumor suppressors and oncogenes. However, the expression pattern of HAUSP in glioma patients is still unclear. The purpose of the present study was to investigate the expression pattern and prognostic significance of HAUSP in patients with glioma. Eighty glioma specimens and 10 normal control samples were obtained. Immunohistochemical assay, quantitative real-time PCR and western blot analysis were carried out to explore the expression of HAUSP. Additionally, the association of HAUSP expression with clinicopathological parameters and the survival of glioma patients were analyzed. Our results showed that HAUSP expression levels were increased from grade I to grade IV in the tumors of the glioma patients. Moreover, the survival rate of patients with HAUSP-positive tumors was lower when compared to that of patients with HAUSP-negative tumors. We further confirmed that high expression of HAUSP was a significant and independent prognostic indicator in glioma by multivariate analysis. Our data provide convincing evidence for the first time that the overexpression of HAUSP at the gene and protein levels is correlated with poor outcome in patients with glioma in China. HAUSP may play an important oncogenic role in glioma progression, and it is a potential diagnostic and therapeutic target.

Loading Anhui Province Key Laboratory of Brain Function and Brain Disease collaborators
Loading Anhui Province Key Laboratory of Brain Function and Brain Disease collaborators