Meishan, China

Anhui Medical University
Meishan, China

Anhui Medical University is a key provincial university in Hefei, Anhui province, China. Wikipedia.

Time filter
Source Type

Liu H.,Anhui Medical University
Cancer Research and Clinic | Year: 2017

Objective To explore the correlation between anemia and the pathogenesis and prognosis of patients with lung cancer. Methods From January 2013 to December 2014, 257 patients with primary lung cancer who were firstly treated at the First Affiliated Hospital of Anhui Medical University were retrospectively analyzed. The clinical data of the patients were collected and the patients were divided into anemia group and control group. The relationship of gender, age, and pathogenesis with anemia was analyzed by χ2 'est-Survival analysis was evaluated by Kaplan-Meier and Log-rank test. Results The TNM stage, lymph nodes and remote metastasis, and ECOG score between the two groups were statistically different (χ2 values were 7.94, 4.97, 4.69, 9.02, all P < 0.05). The survival of the two groups showed statistical differences (χ2 = 7.02, P = 0.008). Conclusion Anemia might be correlated with the stage, lymph nodes and remote metastasis, ECOG score and prognosis of patients with lung cancer.

Tao H.,Anhui Medical University
Toxicology | Year: 2011

Hepatic stellate cells (HSCs) activation is an essential event during liver fibrogenesis. A major pathway is the transition of HSCs into hepatic myofibroblasts. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. Overexpression of this protein results in an increase of global methylation levels. Treatment of HSCs with DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) blocks the cell proliferation. 5-azadC also prevents loss of Ras GTPase activating-like protein 1 (RASAL1) expression that occurs during HSCs proliferation. To further explore the underlying molecular mechanisms, we hypothesized that this perpetuation of fibrogenesis was caused by DNA methylation. Results demonstrated that hypermethylation of RASAL1 is associated with the perpetuation of fibroblast activation and fibrogenesis in the liver. knockdown of MeCP2 using siRNA technique increased RASAL1 in both mRNA and protein level in myofibroblasts. These studies demonstrated that MeCP2 and DNA methylation may provide molecular mechanisms for perpetuated fibroblast activation and fibrogenesis in the liver. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

The anti-malaria drug chloroquine is well known as autophagy inhibitor. Chloroquine has also been used as anti-inflammatory drugs to treat inflammatory diseases. We hypothesized that chloroquine could have a dual effect in liver ischemia/reperfusion (I/R) injury: chloroquine on the one hand could protect the liver against I/R injury via inhibition of inflammatory response, but on the other hand could aggravate liver I/R injury through inhibition of autophagy. Rats (n=6 per group) were pre-treated with chloroquine (60 mg/kg, i.p.) 1 h before warm ischemia, and they were continuously subjected to a daily chloroquine injection for up to 2 days. Rats were killed 0.5, 6, 24 and 48 h after reperfusion. At the early phase (i.e., 0-6 h after reperfusion), chloroquine treatment ameliorated liver I/R injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines and fewer histopathologic changes. In contrast, chloroquine worsened liver injury at the late phase of reperfusion (i.e., 24-48 h after reperfusion). The mechanism of protective action of chloroquine appeared to involve its ability to modulate mitogen-activated protein kinase activation, reduce high-mobility group box 1 release and inflammatory cytokines production, whereas chloroquine worsened liver injury via inhibition of autophagy and induction of hepatic apoptosis at the late phase. In conclusion, chloroquine prevents ischemic liver damage at the early phase, but aggravates liver damage at the late phase in liver I/R injury. This dual role of chloroquine should be considered when using chloroquine as an inhibitor of inflammation or autophagy in I/R injury.

The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders. © 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

Zhang X.,Anhui Medical University
Journal of Dermatological Science | Year: 2012

Complex diseases are caused by both genetic and environmental factors. Over decades, scientists endeavored to uncover the genetic myth of complex diseases by linkage and association studies. Since 2005, the genome-wide association study (GWAS) has been proved to be the most powerful and efficient study design thus far in identifying genetic variants that are associated with complex diseases. More than 230 complex diseases and traits have been investigated by this approach. In dermatology, 10 skin complex diseases have been investigated, a wealth of common susceptibility variants conferring risk for skin complex diseases have been discovered. These findings point to genes and/or loci involved in biological systems worth further investigating by using other methodologies. Certainly, as our understanding of the genetic etiology of skin complex diseases continues to mature, important opportunities will emerge for developing more effective diagnostic and clinical management tools for these diseases. © 2012 Japanese Society for Investigative Dermatology.

Hao J.-Q.,Anhui Medical University
Inflammation | Year: 2014

Interleukin-22 (IL-22) is an IL-10 family cytokine that was recently discovered to be released by T helper 17 (Th17) cells, Th22 cells, etc. Recently, there is emerging evidence that IL-22 is involved in the development and pathogenesis of psoriasis. For instance, IL-22 can inhibit keratinocyte terminal differentiation and can induce psoriasis-like epidermis alterations; serum IL-22 levels were correlated with the disease severity of psoriasis patients, and IL-22 mRNA was positively expressed in the psoriatic skin lesions, but negatively expressed in the normal controls. All these findings suggest that IL-22 may be implicated in psoriasis; therapeutics targeting IL-22 may have promise as a potential therapeutic target for treating psoriasis. In the present review, we summarize recent advances on the role of IL-22 in the pathogenesis and treatment of psoriasis. © 2013 Springer Science+Business Media.

Xu W.D.,Anhui Medical University
Expert reviews in molecular medicine | Year: 2013

Systemic lupus erythematosus (SLE) is a severe multi-system autoimmune disease, whereas interferon regulatory factor (IRF) 5 belongs to the family of transcription factors that modulate immune system activities. Recently, many lines of investigations suggested that IRF5 gene polymorphisms are closely associated with the disease onset of SLE. Indeed, expressed in B cells, dendritic cells (DCs), monocytes and macrophages, IRF5 could significantly affect these immune cells participating in the pathogenesis of SLE, and numerous studies implied that this transcription factor is mechanistically linked to the disease progression. Here, we comprehensively review the updated evidence indicating the roles of IRF5 in autoimmune lupus. Hopefully, the information obtained will lead to a better understanding of the pathogenesis and development of novel therapeutic strategies for the systemic autoimmune disease.

Fei G.H.,Anhui Medical University
Respiratory research | Year: 2013

Cognitive impairment has been found in chronic obstructive pulmonary disease (COPD) patients. However, the structural alteration of the brain and underlying mechanisms are poorly understood. Thirty-seven mild-to-moderate COPD patients, forty-eight severe COPD patients, and thirty-one control subjects were recruited for cognitive test and neuroimaging studies. Serum levels of S100B,pulmonary function and arterial blood gas levels were also evaluated in each subject. The hippocampal volume was significantly smaller in COPD patients compared to the control group. It is positively correlated with a mini mental state examination (MMSE) score, SaO2 in mild-to-moderate COPD patients, the levels of PaO2 in both mild-to-moderate and severe COPD patients. Higher S100B concentrations were observed in mild-to-moderate COPD patients, while the highest S100B level was found in severe COPD patients when compared to the control subjects. S100B levels are negatively associated with MMSE in both mild-to-moderate and severe COPD patients and also negatively associated with the hippocampal volume in the total COPD patients. Hippocampal atrophy based on quantitative assessment by magnetic resonance imaging does occur in COPD patients, which may be associated with cognitive dysfunction and the most prevalent mechanism accountable for hippocampal atrophy is chronic hypoxemia in COPD. Higher serum S100B levels may be peripheral biochemical marker for cognitive impairment in COPD.

The present invention provides are a gold nanoflower structure and a preparation method therefor. The gold nanoflower structure is a gold nanoflower particle, with round-head columns being uniformly distributed at the periphery thereof, obtained by using gold octahedrons, gold balls or gold tetrahedrons as seed crystals and reducing chloroauric acid by using weak reductant in an environment of high-concentration polyvinylpyrrolidone. In addition, also provided in the present invention are a gold nanoflower/quantum dot composite probe for living cell immunofluorescent labeling and photothermal therapy, a preparation method therefor and a use thereof. In comparison with traditional probes, the probe, incorporates the features of photothermal therapy and fluorescent labeling, and is capable of killing cancer cells in an effective and directional way. Two light sources are adopted to bring a tremendous photothermal conversion efficiency and a greater enhancement on fluorescence intensity of quantum dots respectively, thus mutual interference of two effects are avoided tactfully. The coating of silicon dioxide averts the biotoxicity of the gold nanoflower and the quantum dot effectually, enabling the surface of the composite probe to be easily functionalized and also imparting an extraordinarily excellent biocompatibility to the composite probe.

Toxoplasma gondii infection in pregnant women may result in abortion or in fetal teratogenesis; however, the underlying mechanisms are still unclear. In this paper, based on a murine model, we showed that maternal infection with RH strain T. gondii tachyzoites induced elevated production of reactive oxygen species (ROS), local oxidative stress, and subsequent apoptosis of placental trophoblasts. PCR array analysis of 84 oxidative stress-related genes demonstrated that 27 genes were upregulated at least 2-fold and that 9 genes were downregulated at least 2-fold in the T. gondii infection group compared with levels in the control group. The expression of NADPH oxidase 1 (Nox1) and glutathione peroxidase 6 (Gpx6) increased significantly, about 25-fold. The levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) increased significantly with T. gondii infection, and levels of glutathione (GSH) decreased rapidly. T. gondii infection increased the early expression of endoplasmic reticulum stress (ERS) markers, followed by cleavage of caspase-12, activation of ASK1/JNK, and increased apoptosis of trophoblasts, both in vivo and in vitro. The apoptosis of trophoblasts, the activation of caspase-12 and the ASK1/JNK pathway, and the production of peroxides were dramatically inhibited by pretreatment with N-acetylcysteine (NAC). The upregulation of Nox1 was contact dependent and preceded the increase in levels of ERS markers and the activation of the proapoptosis cascade. Thus, we concluded that apoptosis in placental trophoblasts was initiated predominantly by ROS-mediated ERS via activation of caspase-12, CHOP, and the JNK pathway in acute T. gondii infection. Elevated ROS production is the central event in T. gondii-induced apoptosis of placental trophoblasts.

Loading Anhui Medical University collaborators
Loading Anhui Medical University collaborators