Time filter

Source Type

Norwood, MA, United States

Analog Devices, Inc., also known as ADI or Analog, is an American multinational semiconductor company specializing in data conversion and signal conditioning technology, headquartered in Norwood, Massachusetts. In 2012, Analog Devices led the worldwide data converter market with a 48.5% share, according to analyst firm Databeans.The company manufactures analog, mixed-signal and digital signal processing integrated circuits used in electronic equipment. These technologies are used to convert, condition and process real-world phenomena, such as light, sound, temperature, motion, and pressure into electrical signals.Analog Devices has approximately 60,000 customers, in the following industries: communications, computer, industrial, instrumentation, military/aerospace, automotive, and high-performance consumer electronics applications. Wikipedia.

Analog Devices Inc. | Date: 2015-02-11

Apparatus and method for an output stage of an amplifier are disclosed. A current source circuit provides current to a transistor connected to the amplifier output node to produce output voltage, and the current source circuit has two current mirror paths, one of which replicates the output voltage at the output node. As the output voltage approaches rail, more current is steered to the current mirror path not replicating the output voltage and provides additional current or voltage necessary to keep the current source circuit operational.

Analog Devices Inc. | Date: 2015-02-27

Apparatus and methods are disclosed related to managing characteristics of a mobile device based upon capacitive detection of materials proximate the mobile device, a capacitive gesture system that can allow the same gestures be used in arbitrary locations within range of a mobile device. One such method includes receiving a first capacitive sensor measurement with a first capacitive sensor of the mobile device. The method further includes determining a value indicative of a material adjacent to the mobile device based on a correspondence between the first capacitive sensor measurement and stored values corresponding to different materials. The method further includes sending instructions to adjust a characteristic of the mobile device based on the determined value indicative of the material adjacent to the mobile device. In certain examples, gesture sensing can be performed using capacitive measurements from the capacitive sensors.

Analog Devices Inc. | Date: 2015-12-10

Embodiments of the present invention may provide a receiver. The receiver may include an RF section, a local oscillation signal generator to generate quadrature local oscillation signals, and a quadrature mixture, coupled to the RF section, to downconvert a first group of wireless signals directly to baseband frequency quadrature signals and to downconvert a second group of wireless signals to intermediate frequency quadrature signals. The receiver may also include a pair of analog-to-digital converters (ADCs) to convert the downconverted quadrature signals to corresponding digital quadrature signals. Further, the receiver may include a digital section having two paths to perform signal processing on the digital baseband frequency quadrature signals and to downconvert the digital intermediate frequency signals to baseband cancelling a third order harmonic distortion therein. Moreover, the receiver may include a phase corrector to adjust a phase of one of the local oscillation signals to balance the third order harmonic distortion and a gain offset generator to adjust a gain of one of the downconverted signals to balance the third order harmonic distortion.

Analog Devices Inc. | Date: 2015-04-28

Practical electronics such as amplifiers or voltage references can have circuit imbalances due to manufacturing imperfections. For example, amplifiers can have an undesirable offset voltage. The offset voltage might also drift with temperature making the design of these devices difficult. Disclosed are techniques which decrease the amount of offset voltage which provide predictability of device parameters over a range of temperatures.

Analog Devices Inc. | Date: 2015-10-16

Disclosed herein are two-wire communication systems and applications thereof. In some embodiments, a slave node transceiver for low latency communication may include upstream transceiver circuitry to receive a first signal transmitted over a two-wire bus from an upstream device and to provide a second signal over the two-wire bus to the upstream device; downstream transceiver circuitry to provide a third signal downstream over the two-wire bus toward a downstream device and to receive a fourth signal over the two-wire bus from the downstream device; and clock circuitry to generate a clock signal at the slave node transceiver based on a preamble of a synchronization control frame in the first signal, wherein timing of the receipt and provision of signals over the two-wire bus by the node transceiver is based on the clock signal.

Discover hidden collaborations