Amsterdam Brain and Cognition Center

Amsterdam, Netherlands

Amsterdam Brain and Cognition Center

Amsterdam, Netherlands
SEARCH FILTERS
Time filter
Source Type

Oosterwijk S.,University of Amsterdam | Oosterwijk S.,Amsterdam Brain and Cognition Center
PLoS ONE | Year: 2017

This paper examined, with a behavioral paradigm, to what extent people choose to view stimuli that portray death, violence or harm. Based on briefly presented visual cues, participants made choices between highly arousing, negative images and positive or negative alternatives. The negative images displayed social scenes that involved death, violence or harm (e.g., war scene), or decontextualized, close-ups of physical harm (e.g., mutilated face) or natural threat (e.g., attacking shark). The results demonstrated that social negative images were chosen significantly more often than other negative categories. Furthermore, participants preferred social negative images over neutral images. Physical harm images and natural threat images were not preferred over neutral images, but were chosen in about thirty-five percent of the trials. These results were replicated across three different studies, including a study that presented verbal descriptions of images as pre-choice cues. Together, these results show that people deliberately subject themselves to negative images. With this, the present paper demonstrates a dynamic relationship between negative information and behavior and advances new insights into the phenomenon of morbid curiosity. © 2017 Suzanne Oosterwijk.


van der Molen M.J.W.,Leiden University | Dekkers L.M.S.,University of Amsterdam | Westenberg P.M.,Leiden University | van der Veen F.M.,Erasmus University Rotterdam | And 2 more authors.
NeuroImage | Year: 2017

Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4–8 Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. © 2016 Elsevier Inc.


Mittner M.,University of Tromsø | Hawkins G.E.,Amsterdam Brain and Cognition Center | Boekel W.,Amsterdam Brain and Cognition Center | Forstmann B.U.,Amsterdam Brain and Cognition Center
Trends in Cognitive Sciences | Year: 2016

The role of the default-mode network (DMN) in the emergence of mind wandering and task-unrelated thought has been studied extensively. In parallel work, mind wandering has been associated with neuromodulation via the locus coeruleus (LC) norepinephrine (LC-NE) system. Here we propose a neural model that links the two systems in an integrative framework. The model attempts to explain how dynamic changes in brain systems give rise to the subjective experience of mind wandering. The model implies a neural and conceptual distinction between an off-focus state and an active mind-wandering state and provides a potential neural grounding for well-known cognitive theories of mind wandering. Finally, the proposed neural model of mind wandering generates precise, testable predictions at neural and behavioral levels. © 2016 Elsevier Ltd


Oosterwijk S.,University of Amsterdam | Oosterwijk S.,Amsterdam Brain and Cognition Center | Snoek L.,University of Amsterdam | Rotteveel M.,University of Amsterdam | And 5 more authors.
Social Cognitive and Affective Neuroscience | Year: 2017

The present study tested whether the neural patterns that support imagining 'performing an action', 'feeling a bodily sensation' or 'being in a situation' are directly involved in understanding other people's actions, bodily sensations and situations. Subjects imagined the content of short sentences describing emotional actions, interoceptive sensations and situations (self-focused task), and processed scenes and focused on how the target person was expressing an emotion, what this person was feeling, and why this person was feeling an emotion (other-focused task). Using a linear support vector machine classifier on brain-widemulti-voxel patterns, we accurately decoded each individual class in the self-focused task. When generalizing the classifier fromthe self-focused task to the other-focused task, we also accurately decoded whether subjects focused on the emotional actions, interoceptive sensations and situations of others. These results show that the neural patterns that underlie self-imagined experience are involved in understanding the experience of other people. This supports the theoretical assumption that the basic components of emotion experience and understanding share resources in the brain. © The Author (2017). Published by Oxford University Press.


Van Duijvenvoorde A.C.K.,University of Amsterdam | Van Duijvenvoorde A.C.K.,Leiden University | Van Duijvenvoorde A.C.K.,Leiden Institute for Brain and Cognition | Figner B.,Radboud University Nijmegen | And 9 more authors.
Journal of Cognitive Neuroscience | Year: 2016

Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study’s main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in risky choice. Here, we compared people using a compensatory expected value maximization with people using a simplified noncompensatory loss-minimizing choice strategy. To this end, we used a two-choice paradigm including a set of “simple” items (e.g., simple condition), in which one option was superior on all attributes, and a set of “conflict” items, in which one option was superior on one attribute but inferior on other attributes. A binomial mixture analysis of the decisions elicited by these items differentiated between decision-makers using either a compensatory or a noncompensatory strategy. Behavioral differences were particularly pronounced in the conflict condition, and these were paralleled by neural results. That is, we expected compensatory decision-makers to use an integrated value comparison during choice in the conflict condition. Accordingly, the compensatory group tracked the difference in expected value between choice options reflected in neural activation in the parietal cortex. Furthermore, we expected noncompensatory, compared with compensatory, decision-makers to experience increased conflict when attributes provided conflicting information. Accordingly, the noncompensatory group showed greater dorsomedial PFC activation only in the conflict condition. These pronounced behavioral and neural differences indicate the need for decision neuroscience to account for individual differences in risky choice strategies and to broaden its scope to noncompensatory risky choice strategies. © 2016 Massachusetts Institute of Technology.


Van Duijvenvoorde A.C.K.,University of Amsterdam | Huizenga H.M.,University of Amsterdam | Van Duijvenvoorde A.C.K.,Leiden University | Van Duijvenvoorde A.C.K.,Leiden Institute for Brain and Cognition | And 8 more authors.
Journal of Neuroscience | Year: 2015

Adolescence is often described as a period of increased risk taking relative to both childhood and adulthood. This inflection in risky choice behavior has been attributed to a neurobiological imbalance between earlier developing motivational systems and later developing top-down control regions. Yet few studies have decomposed risky choice to investigate the underlying mechanisms or tracked their differential developmental trajectory. The current study uses a risk–return decomposition to more precisely assess the development of processes underlying risky choice and to link them more directly to specific neural mechanisms. This decomposition specifies the influence of changing risks (outcome variability) and changing returns (expected value) on the choices of children, adolescents, and adults in a dynamic risky choice task, the Columbia Card Task. Behaviorally, risk aversion increased across age groups, with adults uniformly risk averse and adolescents showing substantial individual differences in risk sensitivity, ranging from risk seeking to risk averse. Neurally, we observed an adolescent peak in risk-related activation in the anterior insula and dorsal medial PFC. Return sensitivity, on the other hand, increased monotonically across age groups and was associated with increased activation in the ventral medial PFC and posterior cingulate cortex with age. Our results implicate adolescence as a developmental phase of increased neural risk sensitivity. Importantly, this work shows that using a behaviorally validated decision-making framework allows a precise operationalization of key constructs underlying risky choice that inform the interpretation of results. © 2015 the authors.


Krypotos A.-M.,University of Amsterdam | Krypotos A.-M.,Amsterdam Brain and Cognition Center | Arnaudova I.,University of Amsterdam | Arnaudova I.,Amsterdam Brain and Cognition Center | And 7 more authors.
PLoS ONE | Year: 2015

Background and Objectives Exposure therapy for anxiety involves confronting a patient with fear-evoking stimuli, a procedure based partially on Pavlovian extinction. Exposure and other extinction-based therapies usually lead to (partial) reduction of fear symptoms, but a substantial number of patients experience a return of fear after treatment. Here we tested whether the combination of fear extinction with modification of approach-avoidance tendencies using an Approach- Avoidance Task (AAT) would result in the further reduction of conditioned fear and/or help prevent return of fear after extinction. Methods Two groups of participants underwent a fear acquisition procedure during which pictures of one neutral object were sometimes paired with shock (CS+), whereas pictures of another neutral object were not (CS-). The next day, in a fear extinction procedure, both objects were presented without shock. During the subsequent joystick AAT, one group primarily pulled CS+ pictures towards themselves and pushed CS- pictures away from themselves; reversed contingencies applied for the other group. Results Approach training was effective in modifying conditioned action tendencies, with some evidence for transfer to a different approach/avoidance task. No group differences in subjective fear or physiological arousal were found during subsequent post- training and return-of-fear testing. Limitations No reliable return-of-fear was observed in either group for either subjective or physiological fear measures. Conclusions Our results suggest that approach training may be of limited value for enhancing the shortand long-term effects of extinction-based interventions. © 2015 Krypotos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Kret M.E.,University of Amsterdam | Kret M.E.,Amsterdam Brain and Cognition Center | Ploeger A.,University of Amsterdam | Ploeger A.,Amsterdam Brain and Cognition Center
Neuroscience and Biobehavioral Reviews | Year: 2015

Epidemiological studies have revealed that mental disorders are highly comorbid; almost half of the people with a mental disorder also meet the criteria of another disorder. The explanation of this high comorbidity has remained a scientific puzzle. We propose 'disrupted emotion processing' as a liability spectrum that underlies many different mental disorders. Emotion processing deficits have been reported in different disorders and result in difficulties in regulating emotions and at the perceptual level in attentional biases and impaired recognition of emotional expressions. This article provides a detailed overview of the literature on disrupted emotion processing in clinical groups on the behavioral and neurological level. In the discussion, the similarities and differences between these disorders are discussed in the context of common neuro-endocrine, genetic and environmental factors and ideas are put forward on how future research may advance. Most importantly, more interdisciplinary research is needed in which different techniques, tasks and clinical populations are combined to get a better understanding of disrupted emotion processing as a liability spectrum underlying various different mental disorders. © 2015.


Meuwese J.D.I.,University of Amsterdam | Meuwese J.D.I.,Amsterdam Brain and Cognition Center | Scholte H.S.,University of Amsterdam | Scholte H.S.,Amsterdam Brain and Cognition Center | And 2 more authors.
PLoS ONE | Year: 2014

Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli. © 2014 Meuwese et al.

Loading Amsterdam Brain and Cognition Center collaborators
Loading Amsterdam Brain and Cognition Center collaborators