Entity

Time filter

Source Type

Hangzhou, China

Xie B.,CAS Institute of Process Engineering | Liu S.,CAS Institute of Process Engineering | Wu S.,AmProtein China Inc | Chang A.,Dalian University of Technology | And 5 more authors.
Molecular Biotechnology | Year: 2013

Tumor necrosis factor receptor (TNF) and internleukin-1 (IL-1) are the most potent proinflammatory cytokines involving in autoimmune and inflammatory human diseases. Many anti-inflammatory agents have been exploited for anti-inflammation treatments by targeting cytokines including TNF and IL-1. Theoretically, simultaneously neutralizing or blocking two important inflammatory mediators may achieve a synergistic therapeutic effect. We have developed a recombinant fusion protein, TNFR2-Fc-IL-1ra (TFI), which consists of a TNF-neutralizing domain that specifically binds to TNF-α, an IL-1 receptor antagonist domain, and a dimerization Fc portion of human IgG1, for bifunctional inflammatory inhibitor. Recombinant DNA expressing the sequence of this fusion protein was expressed in CHO-S cells. The protein product was purified using a two-step purification protocol and the identity of the protein was confirmed by western blot analysis. The purified recombinant protein had a purity of about 98 % as determined by HPLC, and a molecular mass of 164.6 kDa as determined by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The results of cell binding inhibition indicate that TFI was able to strongly neutralize TNF activity and antagonize IL-1r activity, suggesting that TFI may be used as a bifunctional ligand with enhanced anti-inflammatory effect. The result obtained in this study may provide a platform for extending bifunctional anti-inflammatory drug development. © 2012 Springer Science+Business Media, LLC. Source

Discover hidden collaborations