Seoul, South Korea
Seoul, South Korea

Amkor Technology, Inc. is a semiconductor product packaging and test services provider. Its headquarters is in Chandler, Arizona, since 2005, when it was moved from West Chester, Pennsylvania, United States. The company was founded in 1969 and has 21,600 employees worldwide and reported $2.8 billion in sales in 2011.With factories in China, Japan, Korea, Malaysia, Philippines and Taiwan, Amkor is a leading player in the semiconductor industry. It packages and tests integrated circuits for chip manufacturers. Wikipedia.


Time filter

Source Type

Patent
Amkor Technology Inc. | Date: 2016-10-10

A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device structure (e.g., a sensor device structure), and method for manufacturing thereof, that comprises a three-dimensional package structure free of wire bonds, through silicon vias, and/or flip-chip bonding.


A packaged semiconductor device includes a routable molded lead frame structure with a surface finish layer. In one embodiment, the routable molded lead frame structure includes a first laminated layer including the surface finish layer, vias connected to the surface finish layer, and a first resin layer covering the vias leaving the top surface of the surface finish layer exposed. A second laminated layer includes second conductive patterns connected to the vias, bump pads connected to the second conductive patterns, and a second resin layer covering one side of the first resin layer, the second conductive patterns and the bump pads. A semiconductor die is electrically connected to the surface finish layer and an encapsulant covers the semiconductor die and another side of the first resin layer. The surface finish layer provides a customizable and improved bonding structure for connecting the semiconductor die to the routable molded lead frame structure.


Patent
Amkor Technology Inc. | Date: 2017-01-06

A semiconductor device structure and a method for making a semiconductor device. As non-limiting examples, various aspects of this disclosure provide various semiconductor package structures, and methods for making thereof, that comprise a thin fine-pitch redistribution structure.


Patent
Amkor Technology Inc. | Date: 2017-01-03

Provided are a semiconductor device including an interposer having a relatively thin thickness without a through silicon via and a method of manufacturing the same. The method of manufacturing a semiconductor device includes forming an interposer including a redistribution layer and a dielectric layer on a dummy substrate, connecting a semiconductor die to the redistribution layer facing an upper portion of the interposer, encapsulating the semiconductor die by using an encapsulation, removing the dummy substrate from the interposer, and connecting a bump to the redistribution layer facing a lower portion of the interposer.


Patent
Amkor Technology Inc. | Date: 2016-05-06

A semiconductor package and a manufacturing method thereof, which can reduce the size of the semiconductor package and improve product reliability. In a non-limiting example embodiment, the method may comprise forming an interposer on a wafer, forming at least one reinforcement member on the interposer, coupling and electrically connecting at least one semiconductor die to the interposer to the interposer, filling a region between the semiconductor die and the interposer with an underfill, and encapsulating the reinforcement member, the semiconductor die and the underfill on the interposer using an encapsulant.


Patent
Amkor Technology Inc. | Date: 2016-12-26

In accordance with the present invention, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body. Other embodiments of the semiconductor device comprise one or more interposers which are electrically connected to the through-mold vias, and may be covered by the package body and/or disposed in spaced relation thereto. In yet other embodiments of the semiconductor device, the interposer may not be electrically connected to the through mold vias, but may have one or more semiconductor dies of the semiconductor device electrically connected thereto.


A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a method for manufacturing a semiconductor device that comprises ordering and performing processing steps in a manner that prevents warpage deformation from occurring to a wafer and/or die due to mismatching thermal coefficients.


Patent
Amkor Technology Inc. | Date: 2016-05-09

A method for forming a semiconductor device with an electromagnetic interference shield is disclosed and may include coupling a semiconductor die to a first surface of a substrate, encapsulating the semiconductor die and portions of the substrate using an encapsulant, placing the encapsulated substrate and semiconductor die on an adhesive tape, and forming an electromagnetic interference (EMI) shield layer on the encapsulant, on side surfaces of the substrate, and on portions of the adhesive tape adjacent to the encapsulated substrate and semiconductor die. The adhesive tape may be peeled away from the encapsulated substrate and semiconductor die, thereby leaving portions of the EMI shield layer on the encapsulant and on the side surfaces of the substrate with other portions of the EMI shield layer remaining on portions of the adhesive tape. Contacts may be formed on a second surface of the substrate opposite to the first surface of the substrate.


Patent
Amkor Technology Inc. | Date: 2016-05-08

A semiconductor package and a method of manufacturing a semiconductor package. As a non-limiting example, various aspects of this disclosure provide a semiconductor package, and method of manufacturing thereof, that comprises shielding on multiple sides thereof.


Patent
Amkor Technology Inc. | Date: 2017-02-10

A semiconductor device including a relatively thin interposer excluding a through silicon hole and a manufacturing method thereof are provided. The method includes forming an interposer on a dummy substrate. The forming of the interposer includes, forming a dielectric layer on the dummy substrate, forming a pattern and a via on the dielectric layer, and forming a seed layer at the pattern and the via of the dielectric layer and forming a redistribution layer and a conductive via on the seed layer. A semiconductor die is connected with the conductive via facing an upper portion of the interposer, and the semiconductor die is encapsulated with an encapsulant. The dummy substrate is removed from the interposer. A bump is connected with the conductive via facing a lower portion of the interposer.

Loading Amkor Technology Inc. collaborators
Loading Amkor Technology Inc. collaborators