Seoul, South Korea

Amkor Technology Inc.

www.amkor.com
Seoul, South Korea

Amkor Technology, Inc. is a semiconductor product packaging and test services provider. Its headquarters is in Chandler, Arizona, since 2005, when it was moved from West Chester, Pennsylvania, United States. The company was founded in 1969 and has 21,600 employees worldwide and reported $2.8 billion in sales in 2011.With factories in China, Japan, Korea, Malaysia, Philippines and Taiwan, Amkor is a leading player in the semiconductor industry. It packages and tests integrated circuits for chip manufacturers. Wikipedia.


Time filter

Source Type

Patent
Amkor Technology Inc. | Date: 2017-01-06

A semiconductor device structure and a method for making a semiconductor device. As non-limiting examples, various aspects of this disclosure provide various semiconductor package structures, and methods for making thereof, that comprise a thin fine-pitch redistribution structure.


Patent
Amkor Technology Inc. | Date: 2017-01-03

Provided are a semiconductor device including an interposer having a relatively thin thickness without a through silicon via and a method of manufacturing the same. The method of manufacturing a semiconductor device includes forming an interposer including a redistribution layer and a dielectric layer on a dummy substrate, connecting a semiconductor die to the redistribution layer facing an upper portion of the interposer, encapsulating the semiconductor die by using an encapsulation, removing the dummy substrate from the interposer, and connecting a bump to the redistribution layer facing a lower portion of the interposer.


Patent
Amkor Technology Inc. | Date: 2016-05-06

A semiconductor package and a manufacturing method thereof, which can reduce the size of the semiconductor package and improve product reliability. In a non-limiting example embodiment, the method may comprise forming an interposer on a wafer, forming at least one reinforcement member on the interposer, coupling and electrically connecting at least one semiconductor die to the interposer to the interposer, filling a region between the semiconductor die and the interposer with an underfill, and encapsulating the reinforcement member, the semiconductor die and the underfill on the interposer using an encapsulant.


Patent
Amkor Technology Inc. | Date: 2016-12-26

In accordance with the present invention, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body. Other embodiments of the semiconductor device comprise one or more interposers which are electrically connected to the through-mold vias, and may be covered by the package body and/or disposed in spaced relation thereto. In yet other embodiments of the semiconductor device, the interposer may not be electrically connected to the through mold vias, but may have one or more semiconductor dies of the semiconductor device electrically connected thereto.


Patent
Amkor Technology Inc. | Date: 2016-05-09

A method for forming a semiconductor device with an electromagnetic interference shield is disclosed and may include coupling a semiconductor die to a first surface of a substrate, encapsulating the semiconductor die and portions of the substrate using an encapsulant, placing the encapsulated substrate and semiconductor die on an adhesive tape, and forming an electromagnetic interference (EMI) shield layer on the encapsulant, on side surfaces of the substrate, and on portions of the adhesive tape adjacent to the encapsulated substrate and semiconductor die. The adhesive tape may be peeled away from the encapsulated substrate and semiconductor die, thereby leaving portions of the EMI shield layer on the encapsulant and on the side surfaces of the substrate with other portions of the EMI shield layer remaining on portions of the adhesive tape. Contacts may be formed on a second surface of the substrate opposite to the first surface of the substrate.


Patent
Amkor Technology Inc. | Date: 2016-05-08

A semiconductor package and a method of manufacturing a semiconductor package. As a non-limiting example, various aspects of this disclosure provide a semiconductor package, and method of manufacturing thereof, that comprises shielding on multiple sides thereof.


Patent
Amkor Technology Inc. | Date: 2017-01-24

Methods and systems for a semiconductor device package with a die to interposer wafer first bond are disclosed and may include bonding a plurality of semiconductor die comprising electronic devices to an interposer wafer, and applying an underfill material between the die and the interposer wafer. Methods and systems for a semiconductor device package with a die-to-packing substrate first bond are disclosed and may include bonding a first semiconductor die to a packaging substrate, applying an underfill material between the first semiconductor die and the packaging substrate, and bonding one or more additional die to the first semiconductor die. Methods and systems for a semiconductor device package with a die-to-die first bond are disclosed and may include bonding one or more semiconductor die comprising electronic devices to an interposer die.


Patent
Amkor Technology Inc. | Date: 2017-02-10

A semiconductor device including a relatively thin interposer excluding a through silicon hole and a manufacturing method thereof are provided. The method includes forming an interposer on a dummy substrate. The forming of the interposer includes, forming a dielectric layer on the dummy substrate, forming a pattern and a via on the dielectric layer, and forming a seed layer at the pattern and the via of the dielectric layer and forming a redistribution layer and a conductive via on the seed layer. A semiconductor die is connected with the conductive via facing an upper portion of the interposer, and the semiconductor die is encapsulated with an encapsulant. The dummy substrate is removed from the interposer. A bump is connected with the conductive via facing a lower portion of the interposer.


Provided are a method for fabricating a semiconductor package and a semiconductor package using the same, which can simplify a fabricating process of the semiconductor package by forming a lead frame on which a semiconductor die can be mounted without a separate grinding process, and can improve product reliability by preventing warpage from occurring during a grinding process. In one embodiment, the method for fabricating a semiconductor package includes forming a frame on a carrier, forming a first pattern layer on the frame, first encapsulating the frame and the first pattern layer using a first encapsulant, forming conductive vias electrically connected to the first pattern layer while passing through the first encapsulant, forming a second pattern layer electrically connected to the conductive vias on the first encapsulant, forming a first solder mask formed on the first encapsulant and exposing a portion of the second pattern layer to the outside, removing the frame by an etching process and etching a portion of the first pattern layer, and attaching a semiconductor die to the first pattern layer.


Patent
Amkor Technology Inc. | Date: 2017-03-28

A semiconductor device with thin redistribution layers is disclosed and may include forming a first redistribution layer on a dummy substrate, electrically coupling a semiconductor die to the first redistribution layer, and forming a first encapsulant layer on the redistribution layer and around the semiconductor die. The dummy substrate may be removed thereby exposing a second surface of the first redistribution layer. A dummy film may be temporarily affixed to the exposed second surface of the redistribution layer and a second encapsulant layer may be formed on the exposed top surface of the semiconductor die, a top surface and side edges of the first encapsulant layer, and side edges of the first redistribution layer. The dummy film may be removed to again expose the second surface of the first redistribution layer, and a second redistribution layer may be formed on the first redistribution layer and on the second encapsulant layer.

Loading Amkor Technology Inc. collaborators
Loading Amkor Technology Inc. collaborators