Ames Research Center

Valley Center, CA, United States

Ames Research Center

Valley Center, CA, United States

Time filter

Source Type

News Article | May 9, 2017
Site: www.scientificamerican.com

MESA, Arizona—Since the dawn of the space age NASA and other agencies have spent billions of dollars to reconnoiter Mars—assailing it with spacecraft flybys, photo-snapping orbiters and landers nose-diving onto its surface. The odds are good, many scientists say, for the Red Planet being an extraterrestrial address for alien life—good enough to sustain decades’ worth of landing very expensive robots to ping it with radar, zap it with lasers, trundle across its terrain and scoop up its dirt. Yet against all odds (and researchers’ hopes for a watershed discovery), Mars remains a poker-faced world that holds its cards tight. No convincing signs of life have emerged. But astrobiologists continue to, quite literally, chip away at finding the truth. As the search becomes more heated (some would say more desperate), scientists are entertaining an ever-increasing number of possible explanations for Martian biology as a no-show. For example, could there be a “cover up” whereby the harsh Martian environment somehow obliterates all biosignatures—all signs of past or present life? Or perhaps life there is just so alien its biosignatures are simply unrecognizable to us, hidden in plain view. Of course, the perplexing quest to find life on Mars may have a simple solution: It’s not there, and never was. But as the proceedings of this year’s Astrobiology Science Conference held here in April made clear, life-seeking scientists are not giving up yet. Instead, they are getting more creative, proposing new strategies and technologies to shape the next generation of Mars exploration. Talk about looking for Martians and you inevitably talk about water, the almost-magical liquid that sustains all life on Earth and seems to have served as an indispensable kick-starter for biology in our planet’s deepest past. “It all started out with ‘follow the water;’ not necessarily ‘follow the life’…but ‘follow one of the basic requirements for living systems,’” says Arizona State University geologist Jack Farmer, referring to NASA’s oft-repeated mantra for Martian exploration. “There are many indications of water on Mars in the past, perhaps reservoirs of water in the near subsurface as well,” he says. “But what is the quality of that water? Is it really salty—too salty for life?” Without liquid water, Farmer points out, one would naively think organisms cannot function. The reality may be more complex: on Earth, some resilient organisms such as tardigrades can enter a profound, almost indefinite state of hibernation when deprived of moisture, preserving their desiccated tissues but neither growing nor reproducing. It is possible, Farmer says, that Martian microbes could spend most of their time as inert spores “waiting for something good to happen,” only springing to life given the right and very rare conditions. Certain varieties of Earthly “extremophiles”—microbes that live at extremes of temperature, pressure, salinity and so on—exhibit similar behavior. Farmer says there is as yet no general consensus about the best way to go about life detection on the Red Planet. This is due in no small part to the runaway pace of progress in biotechnology, which has led to innovations such as chemistry labs shrunken down to fit on a computer chip. These technologies “have been revolutionizing the medical field, and have now started to enter into concepts for life detection on Mars,” he explains. Things move so fast that today’s best technology for finding Martian biology may be tomorrow’s laughably obsolete dead-end. But no matter how sophisticated a lab on a chip might be, it won’t deliver results if it is not sent to the right place. Farmer suspects that seriously seeking traces of life requires deep drilling on Mars. “I basically think we’re going to have to gain access to the subsurface and look for the fossil record,” he explains. But discovering a clear, unambiguous fossil biosignature on Mars would also raise a red flag. “We probably would approach the future of Mars exploration—particularly accessing habitable zones of liquid water in the deep subsurface—more cautiously, because life could still be there. So planetary protection would be taken very seriously,” he says. (“Planetary protection” is the term scientists commonly use for precautions to minimize the chance of biological contamination between worlds. Think of it not so much in terms of bug-eyed aliens running rampant on Earth but of billion-dollar robots finding “Martians” that prove to only be hardy bacterial hitchhikers imported from our own world). Like-minded about deep diving on Mars is Penelope Boston, director of the NASA Astrobiology Institute at the agency’s Ames Research Center. “That’s my bias,” she says. “Given Mars’ current state, with all the challenging surface manifestations of dryness, radiation and little atmosphere, the best hope for life still extant on Mars is subsurface.” The subsurface, she says, might also offer better chances of preserving past life—that is, of fossils, even if only of single-celled organisms. The planet’s depths hold the potential for harboring liquid water under certain circumstances, Boston thinks. But how far down might that water be? “I suspect it’s pretty far…and how we get to it, that’s a whole other kettle of fish,” she says. Over the years scientists have estimated the average depth of the planet’s possible liquid reservoirs as anywhere between tens of meters to kilometers. Then again, recent observations from orbiters have revealed mysterious dark streaks that seasonally flow down the sunlit sides of some Martian hillsides and craters. These “recurring slope lineae” could conceivably be brines of liquid water fed by aquifers very close to the surface, some researchers say. Such lingering uncertainties emerge from the indirect and scattered nature of our studies of Mars, and ensure that any argument for life there is based solely on circumstantial information, Boston notes. “Each individual piece of evidence is, on its own merits, weak,” she says. Only by amassing a diverse suite of independent measurements can a well-built case for life on Mars be made, she says: “In my opinion, we can’t make that strong case unless we push to do all of those measurements on exactly the same precise spot. We don’t do that because it’s very difficult, but it’s something to aspire to.” Despite decades of sending costly hardware to Mars, Boston believes that what is still missing is a sense of harmony between instruments, allowing them to work together to support a search for alien life. “I think that the precise requirements of a really robust claim of life at the microscopic scale require us to push on further,” she notes. Attendees at the astrobiology meeting in Arizona showcased an assortment of high-tech devices for next-generation exploration, ranging from microfluidic “life analyzers” and integrated nucleic acid extractors for studying “Martian metagenomics” to exquisitely sensitive, miniaturized organic chemistry labs for spotting tantalizing carbon compounds and minerals at microscopic scales. Missing from the mix, however, was any solid consensus on how these and other tools could all work together to provide a slam-dunk detection of life on Mars. Some scientists contend a new kind of focus is sorely needed. Perhaps the pathway to finding any Martians lurking in the planet’s nooks and crannies is to learn where exactly on Mars those potentially life-nurturing niches exist, and how they change over the course of days, months and years rather than over eons of geologic time. That is, to find homes for extant life on Mars today, researchers should probably not just be studying the planet’s long-term climate but also its day-to-day weather. “Right now we’re sort of shifting gears. Once you’ve found out that a planet is habitable, then the next question is, ‘Was there life?’—so it’s a completely different ball game,” says Nathalie Cabrol, director of the Carl Sagan Center at the SETI Institute. “On Mars you cannot look for life with the tools that have been looking for habitability of that planet,” she argues. “We should be looking for habitats and not habitable environments. You are dealing on Mars with what I call extremophile extreme environments on steroids,” she says, “and you don’t look for microbial life with telescopes from Mars orbit.” Cabrol advocates making an unprecedentedly robust, high-resolution study of environmental variability on Mars by peppering its surface with weather stations. Sooner or later telltale signs of the possible whereabouts of extant life may emerge from the resulting torrents of data. “Today’s environment on that planet is a reflection of something in the past,” she says, and planting numbers of automated stations on Mars does not need to be expensive. “This is of interest not only to astrobiology but to human exploration. The first thing you want to know is what the weather is like,” she says, adding, “Right now we’re not equipped to do this and I’m not saying it’s going to be easy to look for extant life. I’m not saying what we’re doing now is wrong. Whatever we put on the ground we are learning. But there is variability on Mars. You go up or down one meter, things change. Habitats at a microscopic level can happen at the scale of a slope. It can happen at the scale of a rock!” “I think Mars offers us the highest chance of finding life” somewhere beyond Earth, says Dirk Schulze-Makuch, a planetary scientist at Technical University of Berlin in Germany. But, like Boston and others, he maintains confirmation of life will only come from multiple “layers of proof” that have to be consistent with one another. “We really need at least four different kinds of methods,” he says. “My point is that there’s no slam-dunk. We need several instruments. You have to build a case, and right now we can do better…unless the biosignature through a microscope is waving hello.” The trouble, he adds, is that too-stringent planetary protection rules may preclude getting the evidence necessary for that proof. “We have the technology to go to places where there could be life,” he says. “But we can’t go to certain areas on Mars, like recurring slope lineae or…under patches of ice. It seems to be ridiculous.” Indeed, Schulze-Makuch speculates planetary protection may be a lost cause for Mars—or at least a misguided endeavor. It may even be that any Martian microbes are actually Earth’s long-lost cousins. Or, conversely, Mars rather than Earth is really the sole site of biogenesis in our solar system. Both scenarios are possible, considering that single-celled organisms can likely survive world-shattering impacts and the subsequent interplanetary voyages if embedded in ejected shards of rock that could fall elsewhere as meteorites. Innumerable impacts of this scale battered the solar system billions of years ago, potentially blasting biological material between neighboring worlds. On balance, Schulze-Makuch says, “the chances are higher that we are Martians.”


News Article | May 22, 2017
Site: phys.org

Employees at NASA's Search and Rescue office spend their days advancing systems critical to locating and saving people in distress, whether from an aviation, marine or other outdoor incident. The office is the primary research and development team for both the U.S. Search and Rescue Satellite Aided Tracking (SARSAT) effort and the International Satellite System for Search and Rescue (Cospas-Sarsat). Search-and-rescue satellite systems are complex, comprising beacons, spacecraft and ground systems all carefully calibrated to work together efficiently. Rescue efforts usually start with beacons, which transmit distress signals to passing satellites. For years, ships, airlines and even amateur hikers have used emergency locator beacons originally developed in the 1970s. They have saved more than 40,000 lives over the years and are available at virtually any outdoors store at affordable prices. But the SAR office is developing an even more effective beacon. "Current beacons are accurate to about a 2-kilometer radius using technology from the 1970s," said Lisa Mazzuca, SAR mission manager at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Within that radius of about 1.25 miles, there's still quite a bit of searching to be done. "The intent with these second-generation beacons is to get that to about 100 meters (about 110 yards) in an effort to take the 'search' out of 'search and rescue,'" Mazzuca said. At less than a tenth of a mile, the improved accuracy would mitigate risk to both the person in distress and responders, who risk their own lives at times, by greatly reducing time needed to search. The team tested a version of the prototype beacon in October 2016 and were able to demonstrate location accuracy to about 140 meters (153 yards). NASA used its Research and Development Second Generation Beacon SAR ground station, located at Goddard, to resolve locations of the beacon from more than 3,000 miles away. National and international SAR operations will use second-generation beacons in a wide variety of new technologies over the next several years. Mazzuca's team is working on a number of new projects incorporating the new beacons, including improved emergency locator transmitters (ELTs) for commercial and general aviation aircraft, as well as unmanned aerial search vehicles. These technologies could be game-changing to SAR efforts. New ELTs could help mitigate aviation search disasters like several that have been seen in the news in recent years. Shortly after a high-profile crash in 2014, NASA launched a two-year study to investigate ELT failure modes and recommend beacon and system-level improvements, including a better installation policy for the United States. The team researched historic failures and performed three controlled airplane crashes at NASA's Langley Research Center in Hampton, Virginia, to better understand ELT vulnerabilities. In February, they released a report with their findings, one of which was a recommendation to take advantage of smaller, lighter and more accurate second-generation beacons. Beyond distress-tracking systems, the team is working on a new SAR operational platform. "One of the things we're doing is taking advantage of an up-and-coming platform that seems to be the answer for a lot of problems in SAR operations," Mazzuca said. "We are building a new direction-finder homing prototype based entirely on second-generation beacons with a terrestrial signal and proving it out using unmanned aircraft systems." By using existing NASA UAVs and expertise at NASA's Ames Research Center in Silicon Valley, California; NASA's Wallops Flight Facility in Wallops Island, Virginia; and Langley, the team is getting a jump on where technology is going next. Mazzuca said it's also a way to produce an inexpensive system that small local SAR organizations that rely on very old technology can afford. Beyond fitting the UAVs with the direction-finder system, they are working with the U.S. Coast Guard to determine what else can be placed on the aircraft to assist with rescues. Using UAVs for searching will cut down on risk to responders and allow SAR organizations to deploy forces more efficiently. For example, the UAVs could determine whether doctors are needed, how many victims are there, what kind of injuries people in distress have and more before responders ever hit the ground. From better beacons to high-tech systems, NASA's SAR office's work is improving rescue operations in the United States and around the world.


News Article | May 19, 2017
Site: news.yahoo.com

In deep space exploration, as in life, planning gets you only so far. Preparation is essential, but you have to be ready to improvise when you encounter surprises -- such as a world constantly erupting with ice volcanoes, or a system of rivers and lakes made from liquid methane, or giant dunes made from plastic. The dunes and methane lakes are on Titan and the ice volcanoes are on Enceladus -- both moons of the giant ringed planet Saturn, and part of the frontier that NASA is exploring with its epic Cassini mission. Cassini’s scientists have had to think on their feet many times over the nearly 20-year endeavor, which will end this fall when the spacecraft runs out of fuel. “We had to change plans … to make observations we didn’t know we wanted to make ’til we saw things we didn’t expect to see,” said Jeffrey Moore, planetary scientist at NASA’s Ames Research Center in California. And at 900 million miles from home, you can’t exactly go back to get a different camera. In the early 1980s, NASA’s twin Voyager spacecraft had flown by and photographed Saturn and its largest moons, but these were brief encounters and with mid-20th-century technology. They left only hints at what a sustained mission like Cassini might observe, said Moore. So Cassini was built with some flexibility. It bristles with instruments, he said, “like a flying Swiss army knife.” You may start out thinking the blade or screws or scissors are meant for one thing, but once you’re out hiking, you realize they might be used for something else. On Cassini, he said, instruments designed to study particles trapped in the magnetic field of Saturn were repurposed to measure the composition of the material erupting from fields of active volcanoes on Enceladus. That turned out to reveal something important. Enceladus receives meager sunlight, but it gets internal energy from friction generated from the motion of massive tides. So while the crust of Enceladus is icy, this internal heat warms a sea of liquid water underneath. Cassini’s measurements showed that the water erupting from the ice volcanoes is mixed with materials from the moon’s rocky interior -- organic matter and minerals. Thanks to Cassini, Enceladus now joins Jupiter’s moon Europa as a possible abode for extraterrestrial life. Flybys of Titan, Saturn’s biggest moon, have revealed something even more surprising. It’s the only other body in the solar system with earth-like surface features -- lakes, seas, rivers, rain, wind and sand dunes. “Titan is an explorer’s utopia,” says Alex Hayes, a planetary scientist at Cornell University. People can see Titan from ground-based telescopes, he said, and in the early 20th century astronomers saw features they attributed to a thick atmosphere. Pioneer 2 and the Voyagers flew by Titan and took pictures, which revealed nothing more than a sphere of orange haze. But what was underneath? This was tantalizing, said Hayes, because remote sensing techniques showed the atmosphere contained a lot of methane, and at the temperature and pressure expected on Titan, methane should act a lot like water does on Earth -- existing in liquid, solid and gas forms. “There could be this complete analogy to the way water works on Earth,” he said. Back in 2005, in the early part of the mission, Cassini dropped a probe called Huygens into a suicide plunge toward Titan’s surface. The scientists took bets on whether it would crash land or splash down into a methane ocean. It crashed, but on the way down, the camera captures a 2,400-foot-high ice cliff. After that, Cassini visited Titan for 126 short flybys. A device called synthetic aperture radar revealed the features of the surface -- mostly land, but dotted with methane lakes and rivers shaped by methane rain. During the mission, Hayes said, scientists learned how to use system  to explore the lakes -- using them as a ruler to measure the roughness of the surface, and as depth sounders. Oddly, they found the lakes were glassy, where they expected them to be ruffled by the same winds that carved 400-foot-high dunes on the moon’s surface. Later, however, the radar observations showed features on the water, which the scientists dubbed “magic islands” because they kept appearing and disappearing. Hayes said they aren’t islands but features on the water, possibly shaped by winds, which appear to come and go with the Titanian seasons. The spacecraft is in the news this year because it’s almost out of fuel and will die by September. But how NASA would use the craft’s dying weeks wasn’t decided until last summer. Moore, of NASA, said the researchers were influenced by a more recent spacecraft, Juno, which arrived last summer at Jupiter and is making unprecedented close flybys to learn about the solar system’s largest planet. And so Cassini is now death spiraling into Saturn. Over the summer it should get some unprecedented close-ups of those rings -- beautiful in a way no computer-generated drawing can equal. On Sept. 15, it will plunge into Saturn’s stormy atmosphere. It’s too bad the adventure has to end so soon, but the craft finished not just its primary mission but two extended ones, and it gets to die in an interesting way. It’s all a good reminder that exploration is as much in humanity’s blood as squabbling and tribal hostility. Goodbye Cassini. You did us proud. This column does not necessarily reflect the opinion of the editorial board or Bloomberg LP and its owners. To contact the author of this story: Faye Flam at fflam1@bloomberg.net To contact the editor responsible for this story: Tracy Walsh at twalsh67@bloomberg.net


News Article | May 20, 2017
Site: www.techtimes.com

On Friday, May 19, NASA inducted two of its veteran astronauts into the U.S. Astronaut Hall of Fame. Former NASA astronauts Ellen Ochoa and Michael Foale were conferred the honor for setting an example for young people and keeping calm under pressure during important missions. Ochoa is the first Hispanic woman to step into space. Foale is the first and only American to reside on Russia's Mir Space Station and the International Space Station. Both the veteran astronauts were honored in a ceremony held at the Kennedy Space Center Visitor Complex. Bob Cabana, the current director of NASA's Kennedy Space Center in Florida, presided over the ceremony. Cabana is also a member of the Astronaut Hall of Fame and was inducted in 2008. With the inclusion of Foale and Ochoa, the total number of NASA astronauts honored rose to 95. Ochoa is a doctorate in Electrical Engineering from Stanford University and joined NASA as a research engineer in 1988. Her first posting was at NASA's Ames Research Center and in 1990, she was transferred to the Johnson Space Center after getting selected as an astronaut candidate. Currently, the 59-year old veteran astronaut serves as the director at the Johnson Space Center in Houston. She is the first Hispanic woman and the second female director at the Johnson Space Center. Ochoa has flown four shuttle missions, with her first in 1993 and the last in 2002. The NASA astronaut served as a specialist on the STS-56 space mission in 1993 and as a Payload Commander on STS-66 in 1994. In 1999, Ochoa served the role of a mission specialist and flight engineer for the STS-96 space mission. In 2002, on her last flight STS-110, the veteran astronaut served as a flight engineer. Sixty-year-old Foale is best known for his five-month long stay on the Mir Space station in 1997. Foale hails from Cambridge, UK, and is doctorate in laboratory astrophysics. Foale also hold a U.S. citizenship and was chosen as an astronaut candidate in June 1987. Foale was a part of six space shuttle missions, namely STS-45, STS-56, STS-63, STS-84, STS-103, and Soyuz TMA-3. During his famed five-month long stay at the Russian Mir Space Station, Foale assisted others to re-establish the Russian space center after a Progress supply ship crashed at the outpost, causing the space station to depressurize and lose power. "That mission I thought was just going to be kind of a ho-hum for me research mission, but it wasn't. It became one of the most rewarding experiences in a weird and odd way, even though so much trouble befell that mission," Foale recounted later. With all his space missions, Foale logged-in more than 374 days in space which included four space walks. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.


News Article | May 22, 2017
Site: www.eurekalert.org

Some NASA missions fundamentally change the world of science or help win Nobel prizes, but only one helps save thousands of lives worldwide every year. Employees at NASA's Search and Rescue office spend their days advancing systems critical to locating and saving people in distress, whether from an aviation, marine or other outdoor incident. The office is the primary research and development team for both the U.S. Search and Rescue Satellite Aided Tracking (SARSAT) effort and the International Satellite System for Search and Rescue (Cospas-Sarsat). Search-and-rescue satellite systems are complex, comprising beacons, spacecraft and ground systems all carefully calibrated to work together efficiently. Rescue efforts usually start with beacons, which transmit distress signals to passing satellites. For years, ships, airlines and even amateur hikers have used emergency locator beacons originally developed in the 1970s. They have saved more than 40,000 lives over the years and are available at virtually any outdoors store at affordable prices. But the SAR office is developing an even more effective beacon. "Current beacons are accurate to about a 2-kilometer radius using technology from the 1970s," said Lisa Mazzuca, SAR mission manager at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Within that radius of about 1.25 miles, there's still quite a bit of searching to be done. "The intent with these second-generation beacons is to get that to about 100 meters (about 110 yards) in an effort to take the 'search' out of 'search and rescue,'" Mazzuca said. At less than a tenth of a mile, the improved accuracy would mitigate risk to both the person in distress and responders, who risk their own lives at times, by greatly reducing time needed to search. The team tested a version of the prototype beacon in October 2016 and were able to demonstrate location accuracy to about 140 meters (153 yards). NASA used its Research and Development Second Generation Beacon SAR ground station, located at Goddard, to resolve locations of the beacon from more than 3,000 miles away. National and international SAR operations will use second-generation beacons in a wide variety of new technologies over the next several years. Mazzuca's team is working on a number of new projects incorporating the new beacons, including improved emergency locator transmitters (ELTs) for commercial and general aviation aircraft, as well as unmanned aerial search vehicles. These technologies could be game-changing to SAR efforts. New ELTs could help mitigate aviation search disasters like several that have been seen in the news in recent years. Shortly after a high-profile crash in 2014, NASA launched a two-year study to investigate ELT failure modes and recommend beacon and system-level improvements, including a better installation policy for the United States. The team researched historic failures and performed three controlled airplane crashes at NASA's Langley Research Center in Hampton, Virginia, to better understand ELT vulnerabilities. In February, they released a report with their findings, one of which was a recommendation to take advantage of smaller, lighter and more accurate second-generation beacons. Beyond distress-tracking systems, the team is working on a new SAR operational platform. "One of the things we're doing is taking advantage of an up-and-coming platform that seems to be the answer for a lot of problems in SAR operations," Mazzuca said. "We are building a new direction-finder homing prototype based entirely on second-generation beacons with a terrestrial signal and proving it out using unmanned aircraft systems." By using existing NASA UAVs and expertise at NASA's Ames Research Center in Silicon Valley, California; NASA's Wallops Flight Facility in Wallops Island, Virginia; and Langley, the team is getting a jump on where technology is going next. Mazzuca said it's also a way to produce an inexpensive system that small local SAR organizations that rely on very old technology can afford. Beyond fitting the UAVs with the direction-finder system, they are working with the U.S. Coast Guard to determine what else can be placed on the aircraft to assist with rescues. Using UAVs for searching will cut down on risk to responders and allow SAR organizations to deploy forces more efficiently. For example, the UAVs could determine whether doctors are needed, how many victims are there, what kind of injuries people in distress have and more before responders ever hit the ground. From better beacons to high-tech systems, NASA's SAR office's work is improving rescue operations in the United States and around the world. The SAR office is funded by the Human Exploration and Operations Mission Directorate and the Space Communications and Navigation Program Office at NASA Headquarters in Washington.


News Article | May 22, 2017
Site: www.eurekalert.org

A University of Washington-led international team of astronomers has used data gathered by the Kepler Space Telescope to observe and confirm details of the outermost of seven exoplanets or-biting the star TRAPPIST-1. They confirmed that the planet, TRAPPIST-1h, orbits its star every 18.77 days, is linked in its orbital path to its siblings and is frigidly cold. Far from its host star, the planet is likely uninhabit-able -- but it may not always have been so. UW doctoral student Rodrigo Luger is lead author on a paper published May 22 in the journal Nature Astronomy. "TRAPPIST-1h was exactly where our team predicted it to be," Luger said. The researchers dis-covered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. "It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field -- there are usually surprises around every corner, but theory and observation matched perfectly in this case." TRAPPIST-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope (TRAPPIST), the facility that first found evidence of planets around it in 2015. The TRAPPIST survey is led by Michael Gillon of the University of Liège, Belgium, who is also a coauthor on this research. In 2016, Gillon's team announced the detection of three planets or-biting TRAPPIST-1 and this number was upped to seven in a subsequent 2017 paper. Three of TRAPPIST-1's planets appear to be within the star's habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Gillon's team was able to observe only a single transit for TRAP-PIST-1h, the farthest-out of the star's seven progeny, prior to the data analyzed by Luger's team. Luger led a multi-institution international research team that studied the TRAPPIST-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of TRAPPIST-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that TRAPPIST-1's seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. "Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain," Luger said. For instance, closer to home, Jupiter's moons Io, Eu-ropa and Ganymede are set in a 1:2:4 resonance, meaning that Europa's orbital period is exactly twice that of Io, and Ganymede's is exactly twice that of Europa. These relationships, Luger said, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAP-PIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four reso-nant planets. The resonances are "self-correcting," Luger said, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. "Once you're caught into this kind of stable resonance, it's hard to escape," he said. All of this, Luger said, indicates that these orbital connections were forged early in the life of the TRAPPIST-1 system, when the planets and their orbits were not fully formed. "The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," Luger said. "This makes the system a great testbed for planet formation and migration theories." It also means that while TRAPPIST-1h is now extremely cold -- with an average temperature of 173 Kelvin (minus 148 F) -- it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. "We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies," Luger said. Luger said he has been working with data from the K2 mission for a while now, researching ways to reduce "instrumental noise" in its data resulting from broken reaction wheels -- small flywheels that help position the spacecraft -- that can overwhelm planetary signals. "Observing TRAPPIST-1 with K2 was an ambitious task," said Marko Sestovic, a doctoral stu-dent at the University of Bern and second author of the study. In addition to the extraneous sig-nals introduced by the spacecraft's wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed TRAPPIST-1h "near the limit of what we could detect with K2," he said. To make matters worse, Sestovic said, one transit of the planet coincided with a transit of TRAPPIST-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. "Finding the planet was really encouraging," Luger said, "since it showed we can still do high-quality science with Kepler despite significant instrumental challenges." Luger's UW co-authors are astronomy doctoral students Ethan Kruse and Brett Morris, post-doctoral researcher Daniel Foreman-Mackey and professor Eric Agol (Guggenheim Fellow). Agol separately helped confirm the approximate mass of TRAPPIST-1 planets with a technique he and colleagues devised called "transit timing variations" that describes planets' gravitational tugs on one another. Luger said the TRAPPIST-1 system's relative nearness "makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets' atmospheric composition." Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Di-derot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA's Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Mas-sachusetts Institute of Technology; the University of Central Lancashire in England; King Ab-dulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The research was funded by the NASA Astrobiology Institute via the UW-based Virtual Plane-tary Laboratory as well as a National Science Foundation Graduate Student Research Fellow-ship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council and the UK Science and Technology Facilities Council, among other agencies. For more information, visit http://www. or contact Luger at 206-543-6276 or rodluger@uw.edu


News Article | May 24, 2017
Site: www.rdmag.com

A University of Washington-led international team of astronomers has used data gathered by the Kepler Space Telescope to observe and confirm details of the outermost of seven exoplanets orbiting the star TRAPPIST-1. They confirmed that the planet, TRAPPIST-1h, orbits its star every 18.77 days, is linked in its orbital path to its siblings and is frigidly cold. Far from its host star, the planet is likely uninhabitable — but it may not always have been so. UW doctoral student Rodrigo Luger is lead author on a paper published May 22 in the journal Nature Astronomy. "TRAPPIST-1h was exactly where our team predicted it to be," Luger said. The researchers discovered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. "It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field — there are usually surprises around every corner, but theory and observation matched perfectly in this case." TRAPPIST-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope (TRAPPIST), the facility that first found evidence of planets around it in 2015. The TRAPPIST survey is led by Michael Gillon of the University of Liège, Belgium, who is also a coauthor on this research. In 2016, Gillon’s team announced the detection of three planets orbiting TRAPPIST-1 and this number was upped to seven in a subsequent 2017 paper. Three of TRAPPIST-1's planets appear to be within the star's habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Gillon's team was able to observe only a single transit for TRAPPIST-1h, the farthest-out of the star's seven progeny, prior to the data analyzed by Luger’s team. Luger led a multi-institution international research team that studied the TRAPPIST-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of TRAPPIST-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that TRAPPIST-1's seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. "Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain," Luger said. For instance, closer to home, Jupiter's moons Io, Europa and Ganymede are set in a 1:2:4 resonance, meaning that Europa's orbital period is exactly twice that of Io, and Ganymede's is exactly twice that of Europa. These relationships, Luger said, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAPPIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets. The resonances are "self-correcting," Luger said, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. "Once you're caught into this kind of stable resonance, it's hard to escape," he said. All of this, Luger said, indicates that these orbital connections were forged early in the life of the TRAPPIST-1 system, when the planets and their orbits were not fully formed. "The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," Luger said. "This makes the system a great testbed for planet formation and migration theories." It also means that while TRAPPIST-1h is now extremely cold — with an average temperature of 173 Kelvin (minus 148 F) — it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. "We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies," Luger said. Luger said he has been working with data from the K2 mission for a while now, researching ways to reduce "instrumental noise" in its data resulting from broken reaction wheels — small flywheels that help position the spacecraft — that can overwhelm planetary signals. “Observing TRAPPIST-1 with K2 was an ambitious task,” said Marko Sestovic, a doctoral student at the University of Bern and second author of the study. In addition to the extraneous signals introduced by the spacecraft’s wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed TRAPPIST-1h “near the limit of what we could detect with K2,” he said. To make matters worse, Sestovic said, one transit of the planet coincided with a transit of TRAPPIST-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. “Finding the planet was really encouraging,” Luger said, “since it showed we can still do high-quality science with Kepler despite significant instrumental challenges.” Luger's UW co-authors are astronomy doctoral students Ethan Kruse and Brett Morris, post-doctoral researcher Daniel Foreman-Mackey and professor Eric Agol (Guggenheim Fellow). Agol separately helped confirm the approximate mass of TRAPPIST-1 planets with a technique he and colleagues devised called "transit timing variations" that describes planets' gravitational tugs on one another. Luger said the TRAPPIST-1 system's relative nearness "makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets' atmospheric composition." Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Diderot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA's Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Massachusetts Institute of Technology; the University of Central Lancashire in England; King Abdulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The research was funded by the NASA Astrobiology Institute via the UW-based Virtual Planetary Laboratory as well as a National Science Foundation Graduate Student Research Fellowship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council and the UK Science and Technology Facilities Council, among other agencies.


Google co-founder Sergey Brin's secret airship will be used for humanitarian missions, but it will also serve as a giant RV in the sky for his friends and family, according to The Guardian. Citing sources familiar with the project, the report says Brin wants to use the aircraft to “deliver supplies and food on humanitarian missions to remote locations,” but also as a “luxurious intercontinental “air yacht” for [his] friends and family.” The dirigible, which was first revealed by Bloomberg one month ago, is reportedly going to wind up being the biggest aircraft in the world at 200 meters long. (That’s twice the length of the “flying bum,” as long as we’re measuring.) It will use helium instead of flammable hydrogen, and the project supposedly carries a price tag of $100–$150 million — funded completely by Brin. The giant humanitarian sky yacht is being built at Moffett airfield, which is part of NASA’s Ames Research Center in Northern California, where Google’s Planetary Ventures division holds a 60-year lease valued at $1 billion. Brin even has a former Ames head running the project, and as of last month the team reportedly had a full metal frame constructed. Brin, who had employees jump out of a plane while wearing Google Glass in 2012, isn’t the only Google exec who’s fascinated with air travel. His co-founder Larry Page has a hand in two different “flying car” projects — one of which will supposedly be available at the end of this year.


News Article | May 23, 2017
Site: www.futurity.org

New data from the Kepler Space Telescope confirm what astronomers have thought about the  outermost of seven exoplanets orbiting the star Trappist-1. The planet, Trappist-1h, is linked in its orbital path to its siblings, and is frigidly cold. Far from its host star, the planet is likely uninhabitable—but may not always have been that way. “Trappist-1h was exactly where our team predicted it to be,” says Rodrigo Luger, a doctoral student at the University of Washington and lead author of the study in Nature Astronomy. Researchers discovered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. “It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field—there are usually surprises around every corner, but theory and observation matched perfectly in this case.” Trappist-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope, the facility that first found evidence of planets around it in 2015. Study coauthor Michael Gillon of the University of Liège, Belgium, led the survey. In 2016, Gillon’s team announced the detection of three planets orbiting Trappist-1 and this number was upped to seven in a subsequent 2017 paper. Three of the star’s planets appear to be within the star’s habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Researchers were able to observe only a single transit for Trappist-1h, the farthest-out of the star’s seven progeny, prior to the data analyzed by Luger’s team. Astronomers studied the Trappist-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of Trappist-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that Trappist-1’s seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. “Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain,” Luger says. For instance, closer to home, Jupiter’s moons Io, Europa, and Ganymede are set in a 1:2:4 resonance, meaning that Europa’s orbital period is exactly twice that of Io, and Ganymede’s is exactly twice that of Europa. These relationships, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAPPIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. Trappist-1’s seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets. The resonances are “self-correcting,” Luger says, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. “Once you’re caught into this kind of stable resonance, it’s hard to escape.” All of this indicates that these orbital connections were forged early in the life of the Trappist-1 system, when the planets and their orbits were not fully formed. “The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step,” Luger says. “This makes the system a great testbed for planet formation and migration theories.” It also means that while Trappist-1h is now extremely cold—with an average temperature of 173 Kelvin (minus 148 F)—it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. “We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies,” Luger says. Luger has been working with data from the K2 mission for a while now, researching ways to reduce “instrumental noise” in its data resulting from broken reaction wheels—small flywheels that help position the spacecraft — that can overwhelm planetary signals. “Observing Trappist-1 with K2 was an ambitious task,” says Marko Sestovic, a doctoral student at the University of Bern and second author of the study. In addition to the extraneous signals introduced by the spacecraft’s wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed Trappist-1h “near the limit of what we could detect with K2,” he says. To make matters worse, one transit of the planet coincided with a transit of Trappist-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. “Finding the planet was really encouraging,” Luger says, “since it showed we can still do high-quality science with Kepler despite significant instrumental challenges.” The Trappist-1 system’s relative nearness “makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets’ atmospheric composition,” Luger says. Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Diderot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA’s Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Massachusetts Institute of Technology; the University of Central Lancashire in England; King Abdulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The NASA Astrobiology Institute, the National Science Foundation Graduate Student Research Fellowship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council, and the UK Science and Technology Facilities Council, among other agencies, funded the work.

Loading Ames Research Center collaborators
Loading Ames Research Center collaborators