Westborough, MA, United States

American Superconductor Corporation

www.amsc.com
Westborough, MA, United States

American Superconductor is an American energy technologies company based in Devens, Massachusetts specializing in the design and manufacture of power systems and superconducting wire. It owns AMSC Windtech in Klagenfurt, Austria. Wikipedia.


Time filter

Source Type

Patent
American Superconductor Corporation | Date: 2015-09-30

A system for bundling a plurality of high temperature superconductor tapes into a flexible cable, includes a first alignment device for receiving and guiding there through the plurality of high temperature superconductor tapes, each of the tapes arranged with a wide surface oriented at a first angle. There is a second alignment device for receiving and guiding there through the plurality of high temperature superconductor tapes, each of said tapes arranged with the wide surface oriented at a second angle. The first angle is transverse to the second angle and plastically deforms the tapes to impart a twist pitch in the tapes. There is a forming member spaced from the second alignment device for receiving the plurality of high temperature superconductor tapes with the imparted twist pitch and forming them into a bundle of high temperature superconductor tapes of the high temperature superconductor tapes with the imparted twist pitch.


Patent
American Superconductor Corporation and Brookhaven Science Associates LLC | Date: 2016-08-25

A method for producing a long length high temperature superconductor wire, includes providing a substrate, having a surface with a length of at least 50 meters and a width. The surface supports a biaxially textured high temperature superconducting layer and the biaxially textured high temperature superconducting layer has a length and a width corresponding to the length and width of the surface of the substrate. The method includes irradiating the biaxially textured high temperature superconductor layer with an ion beam impinging uniformly along the length and across the width of the biaxially textured high temperature superconductor layer to produce a uniform distribution of pinning microstructures in the biaxially textured high temperature superconductor layer.


Grant
Agency: Department of Energy | Branch: | Program: STTR | Phase: Phase I | Award Amount: 149.96K | Year: 2015

Advanced magnet systems being designed for fusion devices and other applications would greatly benefit from the use of high-temperature superconductors HTS). However, the HTS magnet designs currently suffer from the inability to rapidly detect a quench, raising the possibility that the magnet and associated systems can be damaged if preventative action is not takes fast enough. Most efforts to address this challenge have focused on developing fast respond sensors that can be incorporated into the magnets. The ideal approach, however, is to develop a self-monitoring HTS wire that instantly responds to stress changes occurring at the beginning of a quench condition. This advance self-monitoring wire would provide a level of quench protection not available with existing systems and ensure the reliable operation of critical and costly magnet systems. American Superconductor Corporation AMSC) and collaborators at North Carolina State University NCSU) propose to develop and demonstrate the feasibility of a self- monitoring 2G HTS wire incorporating an embedded optical fiber sensor in the wire. The optical fiber, which will be an integral component in the AMSCs laminated 2G composite wire, will allow the continual, real time monitoring of local temperature variations stress) throughout the length of the wire in the magnet. Temperature increases signal the initiation of a potential quench and will be detected using a novel Rayleigh scattering technique developed at NCSU which overcomes the lack of spatial resolution encountered with conventional optical measurement techniques. The Rayleigh technique will also provide the ability to identify the position of the quench within the wire. It is expected that this self-monitoring capability will add minimal cost to the 2G coil wire manufacturing and can utilize commercially available optical sources and equipment for the detection system. In Phase I we will fabricate short length lengths of the self-monitoring 2G wire and conduct a series of mechanical and electrical test to ensure that the mechanical and electrical integrity of the 2G coil wire and optical fiber are not affected by the manufacturing process. Meter length wires using the optimal design and optical fibers will be produced and the quench detection will be tested in small coils. In Phase II we will develop a reel-to-reel system for incorporating the optical fiber into AMSCs 2G coil wire. The goal will be the production of self-monitoring wire with lengths exceeding 500 meters. The long length wire will be used in coils that will be subjected to extensive testing to confirm the mechanical integrity and the rapid quench detection. The Phase II project will also focus on manufacturing yield and the fabrication of electrical and optical splices. The self-monitoring 2G HTS wire technology will significantly increase the reliability of advanced magnet systems needed for fusion devices and motors and generators being planned for critical energy, defense, medical and other commercial applications. The proposed quench detection technology will provide an unsurpassed level of protection for these critical and expensive systems. This increased reliability will enable the use of HTS wire in these applications, protect the systems from failure and extend the lifetime of the systems, ultimately leading to lower costs for both the advanced magnets and systems.


Patent
American Superconductor Corporation | Date: 2015-04-16

A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase I | Award Amount: 80.00K | Year: 2014

Today"s Navy continues to see increased demand for more power both on and off the ship. This need is largely driven by the continued development of high power density advanced weapons systems and sensors. Continued space and weight limitations for these ship applications will drive the need for new power solutions to be light and compact, easing installation on new ships and enabling upgrades on existing ones. To meet this need, highly efficient methods of transferring large amounts of power are being investigated by NSWC Carderock in Philadelphia through the use of High temperature Superconductors (HTS). Although the team in Philadelphia is developing these high capacity, compact power cables, there is no active development for the connectors that these extremely power dense cables will need if they are to integrated at the ship level. American Superconductor Corporation (AMSC) has gained experience in the development, design and manufacture of low voltage DC HTS cable connectors through its partnership with NSWC on the HTS advanced degaussing program. Although high capacity AC power cable connectors will be dramatically different than their low voltage DC counterparts, AMSC is nonetheless uniquely positioned to successfully develop this type of low temperature, thermally isolated, electrical connection.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase II | Award Amount: 501.86K | Year: 2016

Todays Navy continues to see increased demand for more power both on and off the ship (shore power). This need is driven by many factors. The most important of which is the continued development of high power density advanced weapons systems and sensors. Many power dense applications that naval engineers are working on today are already relying on the independent development of improved power cables for their implementation. Free Electron Lasers, High Power Radar, Laser Self Defense Systems, Electro Magnetic Rail Guns and Active Denial (Directed Energy) systems are just a few of the Navy applications that will need higher capacity, more efficient power cables before deployment to a platform in the fleet can be realized. However, despite the clear need for these high capacity cables, there is not yet a program focused on the connection points of these cables. Cable connection will be a critical component of any implementation effort and an area that desperately needs attention now to insure the proper TRL can be achieved at the time of need. That is the focus of this effort


Patent
American Superconductor Corporation | Date: 2012-09-07

A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable.


Patent
American Superconductor Corporation | Date: 2012-03-30

A rotating machine includes a stator and a rotor configured to rotate within the stator. Rotor windings are supported in the rotor and are formed of a laminated electrical conductor in a single-layer saddle coil configuration. The conductor includes a first support lamina, a second support lamina, an insert including a high temperature superconductor disposed between the first and second support lamina, and a filler material surrounding the insert that bonds the insert to each of the first and second support lamina. At the location between the first support lamina and second support lamina corresponding to the location of the insert, the width dimension of the filler material on each side of the insert is at least 10 percent of a width of the conductor. The conductor is configured to carry at least 600 Amperes per turn and have a C-axis tensile strength of at least 21 MPa.


Patent
American Superconductor Corporation | Date: 2015-04-16

A method for cooling high temperature superconducting (HTS) cable comprising receiving a first flow of coolant at a first section of HTS cable and permitting the first flow of coolant to flow therethrough. The method also includes receiving a second flow of coolant at a second section of HTS cable and permitting the second flow of coolant to flow therethrough. The first section of HTS cable and said second section of HTS cable are coupled via a cable joint, the cable joint electrically connecting the first and second sections of HTS cable. The cable joint is in fluid communication with at least one refrigeration module. The cable joint includes at least one conduit configured to permit a third flow of coolant between the cable joint and the at least one refrigeration module through a coolant line separate from the first and second sections of HTS cable.


Patent
American Superconductor Corporation | Date: 2012-03-30

A cable includes a plurality of bundles of insulated electrical conductors, each bundle having a first conductor, a second conductor, and a third conductor in a layered configuration. The first conductor of each bundle is connected in parallel to the first conductor of the remaining bundles, the second conductor of each bundle is connected in parallel to the second conductor of the remaining bundles, and the third conductor of each bundle is connected in parallel to the third electrical conductor of the remaining bundles. In addition, within each bundle, the first, second and third electrical conductors are configured so that a magnetic field generated in response to currents flowing within the bundle is zero as seen at a plane oriented transverse to an electrical conduction direction of the cable and located between the ends of the cable.

Loading American Superconductor Corporation collaborators
Loading American Superconductor Corporation collaborators