College Park, MD, United States
College Park, MD, United States

Time filter

Source Type

News Article | April 26, 2017
Site: www.nature.com

The number of women receiving US physics PhDs is at an all-time high, according to the latest trend data from the American Institute of Physics (AIP) in College Park, Maryland. AIP figures show that in 2015, 365 women received PhDs, accounting for one in five of the total awarded. In 1975, just 47 physics doctorates (about 5% of the total) were conferred on women. By 2004, that number had risen to 175, about 16% of the total. The AIP's statistical research centre also examined primary sources of financial support for students who began physics graduate programmes in 2013 and 2014. It found that 1% of PhD students funded themselves, compared with 35% of master's students, and that 52% of PhD students worked as teaching assistants to support themselves financially. Another AIP report listed the skills most used by bachelor's graduates who pursued careers in science, technology, engineering and maths. The top skills cited by respondents were solving technical problems (97%), team working (95%), technical writing (79%), project management and quality control (both 77%), and programming (76%). Just one in five were asked to manage budgets.


News Article | April 26, 2017
Site: www.cemag.us

An important concept in future healthcare is the development of devices called “lab on a chip.” These “chips,” not related to the electronic ones found in computers, are small devices in which biological fluids – blood or urine for example – are injected to fill specifically designed microscopic channels. These channels would contain biosensors which could detect for example specific markers for diseases within the fluid and provide a quick diagnosis. A large array of analyses could be performed on a device a few centimeters square. However, an arising issue is the size of the fluid sample injected inside the chip, with tiny volumes down to a billionth of a liter. Due to lack of available technologies, researchers do not yet fully understand how fluids – particularly complex ones of biological origins - behave at such small scales. Prof. Amy Shen and her team members from the Micro/Bio/Nanofluidics Unit at OIST have focused their efforts on using microfluidics as a tool to reveal the laws and principles ruling the behavior of complex fluids at the microscopic scale. Then in a second phase, they make use of these discoveries to provide direct applications in healthcare and biotechnology. Their recent findings can be found in the Journal of Rheology from the American Institute of Physics. Characterizing the Behavior of Polymer Solutions at the Microscopic Scale Polymers are large molecules built from many repeated similar units. They are omnipresent in everyday life, making up most of the synthetic materials that we use, from fabrics to rubber and polystyrene. Liquid polymer solutions can be found in many commercial items from household cleaning products to paint. But it is at the microscopic scale that polymer solutions could drastically improve diagnostic tools. “When you add a polymer to a suspension of particles in water, you trigger a new phenomenon in the microfluidic channel,” Dr. Del Giudice explained. “These polymers start acting as springs to kick particles or cells in the suspension, pushing them towards the middle of the channel and promoting their alignment.” Being able to arrange particles or cells within a microscopic channel represents a huge improvement for the use of biosensors in healthcare diagnosis. Polymer solutions could even separate and sort out by size different components in a complex biological fluid - for example blood, composed of cells and aggregates of many sizes – within a single microfluidic chip. But this phenomenon is highly dependent on the nature of the polymer itself. It takes time for the polymer in a dilute solution to return to its original shape after it being deformed by the flow. This delay, called the relaxation time, is a critical parameter to measure in order to describe polymer behavior. Today, current techniques to measure relaxation times are limited by the sensitivity of the available commercial instruments, which are only able to measure relatively long relaxation times such as those of concentrated polymer solutions in large volumes. In their work, Dr. Francesco Del Giudice and Dr. Simon Haward designed microfluidic devices to observe polymer deformation and relaxation within micrometer-wide channels. These platforms enable researchers to stretch or shear polymers at will using low volumes and low concentrations and to record the reactions to those forces. In this way, they can characterize dilute polymeric fluids with even very short relaxation times, and thus have a much better idea of their behavior at the microscopic scale. Using these new microfluidic tools would allow researchers to generate a catalogue of diverse polymeric fluids whose relaxation times are known. With such a database at their disposal, scientists could then pick a polymer appropriate for the alignment and/or separation of molecules within the biological fluid they want to study inside their chip. “This way, understanding polymer solutions will allow you to create a high throughput platform on a chip made of several different modules, each performing different analyses,” added Dr. Del Giudice.


News Article | April 17, 2017
Site: www.eurekalert.org

Washington, D.C., April 12, 2017 -- Particle physicist Don Lincoln is the winner of the 2017 Andrew Gemant Award, an annual prize recognizing significant contributions to the cultural, artistic or humanistic dimension of physics, the American Institute of Physics (AIP) announced today. Lincoln is currently a senior scientist at Fermi National Accelerator Laboratory in Chicago, where, in addition to conducting research, he also hosts dozens of particle physics videos for Fermilab's YouTube channel, the most popular of which has almost three million views. But Lincoln's efforts in the ways of public outreach and science communication go far beyond his Sagan-esque mini documentaries. His distinguished research career, which has led to over 1,000 publications and includes major contributions to the discoveries of the top quark and the Higgs boson, is paralleled by an extensive resume of science communication work. "We are delighted to award this year's prize to Dr. Lincoln, who has done so much for the field of particle physics, both in fundamental research and in the public eye," said Catherine O'Riordan, chief operating officer of AIP. "His accomplishments in making the world of subatomic particles accessible to so many continue to inspire the scientific community." Lincoln earned his doctorate in experimental particle physics from Rice University in 1994. Though neither of his parents had academic backgrounds or a particular interest in science, Lincoln found his passion for physics thanks to the very efforts of others, which he now emulates. "It turned out that it was the science popularizers of the '70s that helped me get so interested in science -- people like Isaac Asimov and Carl Sagan," Lincoln said. "So to a certain degree, this is simply payback. I figure there's some kid somewhere in Tennessee, Oklahoma, or wherever, who might be in a similar situation, and I'm hoping that by communicating the excitement of science, I might open their eyes to a life that they otherwise could never have imagined." In addition to the weekly Fermilab Today columns he wrote for over a decade, Lincoln has written countless articles appearing in magazines, like Scientific American and The Physics Teacher, and online publications, including the Huffington Post, CNN and the NOVA website's blog. He has authored three books for the public about particle physics and the universe, developed a Theory of Everything course for the Great Courses series, and given hundreds of lectures to a spectrum of audiences, including a TED talk. "I would like to change the culture among the scientific community," Lincoln said. "There is a long history of scientists being hesitant to do science communication because they think their colleagues won't take them seriously as being a real scientist -- and that I think is wrong-minded." Lincoln pointed out that most scientists are publicly funded and said he feels it's incumbent on them to communicate with the public because, "the public is, after all, the core support behind an awful lot of science research." "There are so many scientifically-based topics that will affect our society. Stem cells, vaccinations, climate change [...] and certainly the enormous advances in genetics, which will have a huge impact on our society over the next century. I strongly believe that scientists need to be in the forefront to try and explain what is possible and what is not possible," said Lincoln. "That's doesn't mean the scientists should say what we should do, that's a conversation for the entire country -- or world for that matter -- but the conversation should be based on scientific facts and not the clutter that we often see." The Gemant Award committee selected Lincoln for "over 20 years of enthusiastic and tireless communication of particle and cosmological physics to diverse audiences through public lectures, book, videos and articles, especially those aimed at physics educators." With more than 20 years of communication experience, Lincoln offered sage advice to those just starting in science communication. "I would like to tell the young people trying to do that who are scientists, in the beginning it's a very tough slog," Lincoln said. "It took me a couple of years to sell the first book, with lots of rejections. You just have to be aware that's part of the process. On the other hand, once you've done that, then you're in the club. And when you're in the club it becomes much, much easier. And that's when you can start having an impact." Lincoln will be presented with the award in conjunction with an invited public lecture which will be scheduled for later this year. The award includes a cash prize of $5,000 and a grant of $3,000 to further the public communication of physics at an institution of Lincoln's choice. More information about the award, which will be updated with the details of this year's award presentation, can be found here: https:/ . You can find out more about Don Lincoln and read some of his work on his website here: http://drdonlincoln. and Facebook page here: http://www. . The Andrew Gemant Award recognizes the accomplishments of a person who has made significant contributions to the cultural, artistic, or humanistic dimension of physics given annually. The award is made possible by a bequest of Andrew Gemant to the American Institute of Physics. The awardee receives a $5,000 cash award, designates an academic institution to receive a grant of $3,000 to further the public communication of physics, and is invited to deliver a public lecture in a suitable forum. ABOUT THE AMERICAN INSTITUTE OF PHYSICS The American Institute of Physics is a federation of scientific societies in the physical sciences, representing scientists, engineers, educators, and students. AIP offers authoritative information, services, and expertise in physics education and student programs, science communication, government relations, career services, statistical research in physics employment and education, industrial outreach, and history of the physical sciences. AIP publishes Physics Today, the most closely followed magazine of the physical sciences community, and is also home to the Society of Physics Students and the Niels Bohr Library and Archives. AIP owns AIP Publishing LLC, a scholarly publisher in the physical and related sciences. http://www.


News Article | February 28, 2017
Site: news.mit.edu

Graduate student Hong Sio has gotten used to being somewhere else. His research as part of the MIT Plasma Science and Fusion Center (PSFC) High-Energy-Density Physics (HEDP) team has rotated him from his Albany Street home facilities in Cambridge, Massachusetts, to projects on the OMEGA laser at the University of Rochester in New York, to collaborations on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California. “I spent 120 days in hotel rooms last year,” he laughs. “Four months on the road.” All this travel has been necessary to support the kind of research that recently earned his fusion diagnostic a spot on the cover of an American Institute of Physics journal. Sio has been taking significant journeys since the age of 10, when his family emigrated from Macau to the U.S., settling in southern California. Sio credits a high school summer program at the University of California at Irvine with cementing his interest in science and specifically fusion, a potential source of abundant energy that has been an elusive goal of scientists for decades. “UCI has an underground, research-grade nuclear reactor for producing medical isotopes — not meant to produce power, but still a really nice reactor. Touring that facility made an impression on me. It made me think about how we generate electricity. It made me think about how we are going to generate electricity 30, 50 years from now.” Sio continued his interest in energy research as a physics major at Harvey Mudd College. He worked at the department’s high-intensity laser lab, which deepened his interest in lasers, fusion, and graduate study in physics. When he interviewed at MIT with HEDP division head Richard Petrasso, Sio had found a situation, and a research group, that “checked off all the boxes.” “I thought, ‘Well, this group shoots lasers at things; this group works on fusion. What’s there to think about?’”  And his decision was made. The decision immersed him in inertial confinement fusion (ICF) research and has led to his particle X-ray temporal diagnostic (PTXD) being featured on the cover of the AIP Review of Scientific Instruments (from the Proceedings of the 21st Topical Conference on High-Temperature Plasma Diagnostics). Sio describes the ICF process: “At the simplest level, we fill a tiny capsule with fusion fuel and fire many lasers at it simultaneously, compressing and heating the fuel. The hotter and more dense the fuel becomes, the more fusion reactions are generated.” Researchers measure the nuclear products from these fusion reactions with special diagnostics in order to understand what is happening in the capsule and improve performance. In experiments on OMEGA, Sio’s PXTD has made it possible for the first time to take simultaneous measurements of X-rays and nuclear reactions during the energy-intense implosions of fusion fuel that characterize ICF fusion. The PXTD provides nuclear reaction history information during the “shock-burn” phase of the implosion, when the plasma fuel is particularly kinetic, characterized by high temperature and low density. “We want to better understand this initial stage of ICF implosion and what affect it has later on in the implosion when the shell finally collapses. And to understand whether current simulation tools are sufficient,” he says. Sio is also responsible for the magnetic particle time-of-flight (magPTOF) diagnostic on the NIF. A project worked on by MIT graduate Hans Rinderknecht when he was part of the HEDP team, the diagnostic simultaneously measures shock- and compression-bang times — the moments of peak thermonuclear burn during ICF implosions. Being able to directly measure the shock-bang and compression-bang times helps researchers understand the physics involved in ICF implosions and provides necessary feedback for the next experiments. “NIF is the most energetic laser facility in the world. OMEGA is the second largest laser facility in the U.S. The opportunity to be so deeply involved at these world-class facilities as a graduate student is nothing short of remarkable,” Sio says. Both his diagnostic and physics projects on OMEGA and the NIF support reaching ignition and a path to fusion energy. Sio recognizes that fusion energy is an immense physics and engineering challenge. He sees inertial confinement fusion as an integral part of the international fusion program, as one of several diverse approaches to making fusion work. A recipient of the Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship (DOE NNSA SSGF), Sio will present his most recent research at the NNSA headquarters in Washington, D.C. on May 9, 2017. Sio anticipates graduating from MIT in the fall of 2017 and hopes to continue contributing to ICF fusion research, possibly as a postdoc at MIT, or at other national ICF facilities such as OMEGA or NIF, where his time on the road has already made him a familiar and welcome addition.


News Article | February 2, 2017
Site: www.sciencemag.org

The March for Science, set for 22 April, is creating a buzz in the scientific community. The march arose as a grassroots reaction to concerns about the conduct of science under President Donald Trump. And it has spurred debate over whether it will help boost public support for research, or make scientists look like another special interest group, adding to political polarization. Leaders of many scientific societies have been mulling whether to formally endorse or take a role in the event. ScienceInsider has been tracking what they decide, and here's what we know as of 28 February (most recent updates at the top of each section): On 2 March, the Society for Neuroscience (SfN) in Washington, D.C., endorsed the march and encouraged its 37,000 members to participate. The move followed a unanimous decision by the organization’s governing council. “The Council believes that support for the March is consistent with the Society’s founding principles, which include promoting the essentiality of open exchange of scientific ideas and global scientific collaboration, the importance of evidence and experimental data as a foundation for decision-making, and nonpartisan advocacy for sustained, robust funding for science,” wrote SfN President Eric Nestler in a statement on the society website. On 1 March, the 12,000-member American Association of Geographers in Washington, D.C., endorsed the march in a statement reading, “We are proud to join with our colleagues in all disciplines to champion the ideals that science is critical to societal and human rights, and is a pillar in educating and protecting us.” On 28 February, the Society for Freshwater Science (SFS) in Logan, Utah, formally endorsed the march. "For those SFSers that march, SFS will be preparing a series of short statements (suitable for signs, buttons, t-shirts) that call particular attention to recent efforts to roll back environmental protections for U.S. freshwaters (WOTUS and the stream protection rule) that are in clear disregard of the best available science," SFS President Emily S. Bernhardt and President-elect Colden Baxter wrote in a statement."We would appreciate your creative suggestions for pithy, eye catching and reasonable statements." On 23 February, some major groups—including AAAS (publisher of  Insider), which has about 100,000 members, and the American Geophysical Union (AGU), which has about 60,000 members—announced they are signing on. The two organizations were on a list of 25 formal partners unveiled by the March for Science. “We see the activities collectively known as the March as a unique opportunity to communicate the importance, value and beauty of science,” AAAS CEO Rush Holt wrote in a statement on the website of the Washington, D.C.–based organization, which bills itself as the largest general science society in the world. Participation “is in keeping with AAAS’ long-standing mission to ‘advance science, engineering and innovation throughout the world for the benefit of all people.'” “This is a unique moment for AGU, the scientific community, our nation, and the world,” AGU President Eric Davidson and President-elect Robin Bell wrote in a statement on the website of the organization, also based in Washington, D.C. The March “presents … a very real, high-profile opportunity to call on our elected leaders to remember the role science plays in our society and to support scientific innovation and discovery, and the people and programs that make it possible,” wrote AGU CEO Chris McEntee. The details of how the endorsing organizations will be involved in the march are still being worked out, AAAS CEO Rush Holt told Insider. For instance, possible financial support from AAAS has not yet been discussed, he says. Holt acknowledged concerns that the march could lead to a political backlash if it is perceived primarily as a partisan attack on the Trump administration. But he says “I would be more concerned about having a big rally on behalf of science and our not being there.” Here are the groups included on the 23 February list of formal March for Science partners: The Optical Society (OSA) in Washington, D.C. “We are still considering at this time if or how we will get involved. In the meantime, we will continue to monitor the news for planning updates,” Rebecca Andersen, OSA’s public relations director, wrote in an email (more than 20,000 members). The American Society of Plant Biologists (ASPB) in Rockville, Maryland. “Although we have a date and a compelling mission statement, there’s a lot that has yet to be worked out,” noted ASPB Chief Executive Officer Crispin Taylor in an email. “That said, to the extent that the march organizers maintain their emphasis on a positive and apolitical message regarding empirical science and its role in decision making, I expect that, at a minimum, ASPB will support the participation of its members in the march.” (about 4000 members). The American Institute of Physics (AIP) in College Park, Maryland. “We simply do not know much about this march yet,” wrote AIP Chief Executive Officer Robert Brown in an email. But he noted that AIP staff is “free to exercise their free speech by participating in this demonstration as individuals.” (a federation of 10 societies that, combined, have more than 120,000 members). The American Chemical Society (ACS) in Washington, D.C. “The American Chemical Society is impressed with [the] number of individuals who have already voiced their support for science and the march—it is a testament to the grassroots organizing power of social media. ACS is currently seeking to gain greater insight into the goals and messaging of the march to determine if there is an appropriate role for the Society,” reads a statement from ACS (more than 157,000 members). So far no organizations have explicitly come out against the march. But American Institute of Physics Chief Executive Robert Brown suggested in an email that any “inflammatory demonstrations will cause negative retaliations.”


Scientific understanding of the role of humans in influencing and altering the global climate has been evolving for over a century. That understanding is now extremely advanced, combining hundreds of years of observations of many different climatic variables, millions of years of paleoclimatic evidence of past natural climatic variations, extended application of fundamental physical, chemical, and biological processes, and the most sophisticated computer modeling ever conducted. There is no longer any reasonable doubt that humans are altering the climate, that those changes will grow in scope and severity in the future, and that the economic, ecological, and human health consequences will be severe. While remaining scientific uncertainties are still being studied and analyzed, the state of the science has for several decades been sufficient to support implementing local, national, and global policies to address growing climate risks. This is the conclusion of scientific studies, syntheses, and reports to policymakers extending back decades. Because of the strength of the science, and the depth of the consensus about climate change, the scientific community has worked hard to clearly and consistently present the state of understanding to the public and policymakers to help them make informed decisions. The scientific community does this in various ways. Individual scientists speak out, presenting scientific results to journalists and the public. Scientists and scientific organizations prepare, debate, and publish scientific statements and declarations based on their expertise and concerns. And national scientific organizations, especially the formal “Academies of Sciences,” prepare regular reports on climate issues that are syntheses of all relevant climate science and knowledge. The number and scope of these statements is truly impressive. Not a single major scientific organization or national academy of science on earth denies that the climate is changing, that humans are responsible, and that some form of action should be taken to address the risks to people and the planet. This consensus is not to be taken lightly. Indeed, this consensus is an extraordinarily powerful result given the contentious nature of science and the acclaim that accrues to scientists who find compelling evidence that overthrows an existing paradigm (as Galileo, Darwin, Einstein, Wegener, and others did in their fields). In a peculiar twist, some have tried to argue that acceptance of the strength of the evidence and the massive consensus in the geoscience community about human-caused climate change is simply “argument from consensus” or “argument from authority” – a classic potential “logical fallacy.” Indeed, the mere fact that nearly 100 percent of climate and geoscience professions believe humans are changing the climate does not guarantee that the belief is correct. But arguing that something is false simply because there is a strong consensus for it is an even worse logical fallacy, especially when the consensus is based on deep, extensive, and constantly tested scientific evidence. In fact, this false argument has a name: the Galileo Gambit. It is used by those who deny well-established scientific principles such as the theory of climate change as follows: Because Galileo was mocked and criticized for his views by a majority, but later shown to be right, current minority views that are mocked and criticized must also be right. The obvious flaw in the Galileo Gambit is that being criticized for one’s views does not correlate with being right – especially when the criticism is based on scientific evidence. Galileo was right because the scientific evidence supported him, not because he was mocked and criticized. The late professor Carl Sagan addressed this use of the Galileo Gambit in a humorous way when he noted: These statements and declarations about climate change by the world’s leading scientific organizations represent the most compelling summary of the state of knowledge and concern about the global geophysical changes now underway, and they provide the foundation and rationale for actions now being debated and implemented around the world. The world ignores them at its peril. Here, based on information available as of early January 2017, is a synthesis, listing, and links for these public positions and declarations. These statements are summarized below for more than 140 of the planet’s national academies and top scientific health, geosciences, biological, chemical, physical, agricultural, and engineering organizations. Each statement is archived online as noted in the links. Abbreviated sections of statements only are presented, but readers should consult the full statements for context and content. Also, scientific organizations and committees periodically update, revise, edit, and re-issue position statements. Please send me any corrections, updates, additions, and changes. The AAN is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as “climate change,” are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats… The social foundations of children’s mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children… Pediatricians have a uniquely valuable role to play in the societal response to this global challenge… [The AAP is also a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/] The scientific evidence is clear: global climate change caused by human activities is occurring now, and it is a growing threat to society. Accumulating data from across the globe reveal a wide array of effects: rapidly melting glaciers, destabilization of major ice sheets, increases in extreme weather, rising sea level, shifts in species ranges, and more. The pace of change and the evidence of harm have increased markedly over the last five years. The time to control greenhouse gas emissions is now. [The AAAS has also signed onto more recent letters on climate from an array of scientific organizations, including the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] There is widespread scientific agreement that the world’s climate is changing and that the weight of evidence demonstrates that anthropogenic factors have and will continue to contribute significantly to global warming and climate change. It is anticipated that continuing changes to the climate will have serious negative impacts on public, animal and ecosystem health due to extreme weather events, changing disease transmission dynamics, emerging and re-emerging diseases, and alterations to habitat and ecological systems that are essential to wildlife conservation. Furthermore, there is increasing recognition of the inter-relationships of human, domestic animal, wildlife, and ecosystem health as illustrated by the fact the majority of recent emerging diseases have a wildlife origin. Consequently, there is a critical need to improve capacity to identify, prevent, and respond to climate-related threats.  The following statements present the American Association of Wildlife Veterinarians (AAWV) position on climate change, wildlife diseases, and wildlife health…. The American Geophysical Union (AGU) notes that human impacts on the climate system include increasing concentrations of greenhouse gases in the atmosphere, which is significantly contributing to the warming of the global climate. The climate system is complex, however, making it difficult to predict detailed outcomes of human-induced change: there is as yet no definitive theory for translating greenhouse gas emissions into forecasts of regional weather, hydrology, or response of the biosphere. As the AGU points out, our ability to predict global climate change, and to forecast its regional impacts, depends directly on improved models and observations. The American Astronomical Society (AAS) joins the AGU in calling for peer-reviewed climate research to inform climate-related policy decisions, and, as well, to provide a basis for mitigating the harmful effects of global change and to help communities adapt and become resilient to extreme climatic events. In endorsing the “Human Impacts on Climate” statement, the AAS recognizes the collective expertise of the AGU in scientific subfields central to assessing and understanding global change, and acknowledges the strength of agreement among our AGU colleagues that the global climate is changing and human activities are contributing to that change. Careful and comprehensive scientific assessments have clearly demonstrated that the Earth’s climate system is changing in response to growing atmospheric burdens of greenhouse gases (GHGs) and absorbing aerosol particles. (IPCC, 2007) Climate change is occurring, is caused largely by human activities, and poses significant risks for—and in many cases is already affecting—a broad range of human and natural systems. (NRC, 2010a) The potential threats are serious and actions are required to mitigate climate change risks and to adapt to deleterious climate change impacts that probably cannot be avoided. (NRC, 2010b, c) This statement reviews key probable climate change impacts and recommends actions required to mitigate or adapt to current and anticipated consequences. …comprehensive scientific assessments of our current and potential future climates clearly indicate that climate change is real, largely attributable to emissions from human activities, and potentially a very serious problem. This sober conclusion has been recently reconfirmed by an in-depth set of studies focused on “America’s Climate Choices” (ACC) conducted by the U.S. National Academies (NRC, 2010a, b, c, d). The ACC studies, performed by independent and highly respected teams of scientists, engineers, and other skilled professionals, reached the same general conclusions that were published in the latest comprehensive assessment conducted by the International Panel on Climate Change (IPCC, 2007)… The range of observed and potential climate change impacts identified by the ACC assessment include a warmer climate with more extreme weather events, significant sea level rise, more constrained fresh water sources, deterioration or loss of key land and marine ecosystems, and reduced food resources— many of which may pose serious public health threats. (NRC, 2010a) The effects of an unmitigated rate of climate change on key Earth system components, ecological systems, and human society over the next 50 years are likely to be severe and possibly irreversible on century time scales… [The ACS has also signed onto more recent letters on climate from an array of scientific organizations, including the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] THAT: The American College of Preventive Medicine (ACPM) accept the position that global warming and climate change is occurring, that there is potential for abrupt climate change, and that human practices that increase greenhouse gases exacerbate the problem, and that the public health consequences may be severe. THAT: The ACPM staff and appropriate committees continue to explore opportunities to address this matter, including sessions at Preventive Medicine conferences and the development of a policy position statement as well as other modes of communicating this issue to the ACPM membership. [The ACPM is also a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/] Humanity is the major influence on the global climate change observed over the past 50 years. Rapid societal responses can significantly lessen negative outcomes. Human activities are changing Earth’s climate. At the global level, atmospheric concentrations of carbon dioxide and other heat‐trapping greenhouse gases have increased sharply since the Industrial Revolution. Fossil fuel burning dominates this increase. Human‐caused increases in greenhouse gases are responsible for most of the observed global average surface warming of roughly 0.8°C (1.5°F) over the past 140 years. Because natural processes cannot quickly remove some of these gases (notably carbon dioxide) from the atmosphere, our past, present, and future emissions will influence the climate system for millennia. Extensive, independent observations confirm the reality of global warming. These observations show large‐scale increases in air and sea temperatures, sea level, and atmospheric water vapor; they document decreases in the extent of mountain glaciers, snow cover, permafrost, and Arctic sea ice. These changes are broadly consistent with long understood physics and predictions of how the climate system is expected to respond to human‐caused increases in greenhouse gases. The changes are inconsistent with explanations of climate change that rely on known natural influences… [The AGU has also signed onto more recent letters on climate from an array of scientific organizations, including the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] [The AIBS is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] The Governing Board of the American Institute of Physics has endorsed a position statement on climate change adopted by the American Geophysical Union (AGU) Council in December 2003. AGU is one of ten Member Societies of the American Institute of Physics. The statement follows: Human activities are increasingly altering the Earth’s climate. These effects add to natural influences that have been present over Earth’s history. Scientific evidence strongly indicates that natural influences cannot explain the rapid increase in global near-surface temperatures observed during the second half of the 20th century. Human impacts on the climate system include increasing concentrations of atmospheric greenhouse gases (e.g., carbon dioxide, chlorofluorocarbons and their substitutes, methane, nitrous oxide, etc.), air pollution, increasing concentrations of airborne particles, and land alteration. A particular concern is that atmospheric levels of carbon dioxide may be rising faster than at any time in Earth’s history, except possibly following rare events like impacts from large extraterrestrial objects… The ALA is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ If physicians want evidence of climate change, they may well find it in their own offices. Patients are presenting with illnesses that once happened only in warmer areas. Chronic conditions are becoming aggravated by more frequent and extended heat waves. Allergy and asthma seasons are getting longer. Spates of injuries are resulting from more intense ice storms and snowstorms. Scientific evidence shows that the world’s climate is changing and that the results have public health consequences. The American Medical Association is working to ensure that physicians and others in health care understand the rise in climate-related illnesses and injuries so they can prepare and respond to them. The Association also is promoting environmentally responsible practices that would reduce waste and energy consumption. Amicus Brief filed before the Supreme Court in support of the Clean Power Plan. Failure to uphold the Clean Power Plan would undermine [the] EPA’s ability to carry out its legal obligation to regulate carbon emissions that endanger human health and would negatively impact the health of current and future generations. Carbon emissions are a significant driver of the anthropogenic greenhouse gas emissions that cause climate change and consequently harm human health. Direct impacts from the changing climate include health-related illness, declining air quality and increased respiratory and cardiovascular illness. Changes in climate also facilitate the migration of mosquito-borne diseases, such as dengue fever, malaria and most recently the Zika Virus. “In surveys conducted by three separate U.S. medical professional societies,” the brief said, “a significant majority of surveyed physicians concurred that climate change is occurring … is having a direct impact on the health of their patients, and that physicians anticipate even greater climate-driven adverse human health impacts in the future.” [This statement is considered in force until August 2017 unless superseded by a new statement issued by the AMS Council before this date.] …Warming of the climate system now is unequivocal, according to many different kinds of evidence.  Observations show increases in globally averaged air and ocean temperatures, as well as widespread melting of snow and ice and rising globally averaged sea level. Surface temperature data for Earth as a whole, including readings over both land and ocean, show an increase of about 0.8°C (1.4°F) over the period 1901-2010 and about 0.5°C (0.9°F) over the period 1979–2010 (the era for which satellite-based temperature data are routinely available). Due to natural variability, not every year is warmer than the preceding year globally. Nevertheless, all of the 10 warmest years in the global temperature records up to 2011 have occurred since 1997, with 2005 and 2010 being the warmest two years in more than a century of global records. The warming trend is greatest in northern high latitudes and over land. In the U.S., most of the observed warming has occurred in the West and in Alaska; for the nation as a whole, there have been twice as many record daily high temperatures as record daily low temperatures in the first decade of the 21st century… There is unequivocal evidence that Earth’s lower atmosphere, ocean, and land surface are warming; sea level is rising; and snow cover, mountain glaciers, and Arctic sea ice are shrinking. The dominant cause of the warming since the 1950s is human activities. This scientific finding is based on a large and persuasive body of research. The observed warming will be irreversible for many years into the future, and even larger temperature increases will occur as greenhouse gases continue to accumulate in the atmosphere. Avoiding this future warming will require a large and rapid reduction in global greenhouse gas emissions. The ongoing warming will increase risks and stresses to human societies, economies, ecosystems, and wildlife through the 21st century and beyond, making it imperative that society respond to a changing climate. To inform decisions on adaptation and mitigation, it is critical that we improve our understanding of the global climate system and our ability to project future climate through continued and improved monitoring and research. This is especially true for smaller (seasonal and regional) scales and weather and climate extremes, and for important hydroclimatic variables such as precipitation and water availability… Technological, economic, and policy choices in the near future will determine the extent of future impacts of climate change. Science-based decisions are seldom made in a context of absolute certainty. National and international policy discussions should include consideration of the best ways to both adapt to and mitigate climate change. Mitigation will reduce the amount of future climate change and the risk of impacts that are potentially large and dangerous. At the same time, some continued climate change is inevitable, and policy responses should include adaptation to climate change. Prudence dictates extreme care in accounting for our relationship with the only planet known to be capable of sustaining human life. [The AIBS is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe. While natural sources of climate variability are significant, multiple lines of evidence indicate that human influences have had an increasingly dominant effect on global climate warming observed since the mid-twentieth century. Although the magnitudes of future effects are uncertain, human influences on the climate are growing. The potential consequences of climate change are great and the actions taken over the next few decades will determine human influences on the climate for centuries. As summarized in the 2013 report of the Intergovernmental Panel on Climate Change (IPCC), there continues to be significant progress in climate science. In particular, the connection between rising concentrations of atmospheric greenhouse gases and the increased warming of the global climate system is more compelling than ever. Nevertheless, as recognized by Working Group 1 of the IPCC, scientific challenges remain in our abilities to observe, interpret, and project climate changes. To better inform societal choices, the APS urges sustained research in climate science. The APS reiterates its 2007 call to support actions that will reduce the emissions, and ultimately the concentration, of greenhouse gases as well as increase the resilience of society to a changing climate, and to support research on technologies that could reduce the climate impact of human activities. … The APA is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ [This policy builds upon and replaces existing policies 20078 (Addressing the Urgent Threat of Global Climate Change to Public Health and the Environment) and 9510 (Global Climate Change)] Public Health Opportunities to Address the Health Effects of Climate Change Climate change poses major threats to human health, human and animal populations, ecological stability, and human social, financial, and political stability and well-being. Observed health impacts of climate change include increased heat-related morbidity and mortality, expanded ranges and frequency of infectious disease outbreaks, malnutrition, trauma, violence and political conflict, mental health issues, and loss of community and social connections. Certain populations will experience disproportionate negative effects, including pregnant women, children, the elderly, marginalized groups such as racial and ethnic minorities, outdoor workers, those with chronic diseases, and those in economically disadvantaged communities. Climate change poses significant ethical challenges as well as challenges to global and health equity. The economic risks of inaction may be significant, yet many strategies to combat climate change offer near- and long-term co-benefits to health, producing cost savings that could offset implementation costs. At present, there are major political barriers to adopting strategies to mitigate and adapt to climate change. Recognizing the urgency of the issue and importance of the public health role, APHA, the Centers for Disease Control and Prevention, and others have developed resources and tools to help support public health engagement. APHA calls for individual, community, national, and global action to address the health risks posed by climate change. The public health community has critical roles to play, including advocating for action, especially among policymakers; engaging in health prevention and preparedness efforts; conducting surveillance and research on climate change and health; and educating public health professionals. [The APHA is also a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/] [The APHA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] Letter to EOS of the Council of the AQA The available scientific evidence clearly shows that the Earth on average is becoming warmer… Few credible scientists now doubt that humans have influenced the documented rise of global temperatures since the Industrial Revolution. The first government led U.S. Climate Change Science Program synthesis and assessment report supports the growing body of evidence that warming of the atmosphere, especially over the past 50 years, is directly impacted by human activity. In 2003, the ASM issued a policy report in which they recommend “reducing net anthropogenic CO emissions to the atmosphere” and “minimizing anthropogenic disturbances of” atmospheric gases: “Carbon dioxide concentrations were relatively stable for the past 10,000 years but then began to increase rapidly about 150 years ago… as a result of fossil fuel consumption and land use change. Of course, changes in atmospheric composition are but one component of global change, which also includes disturbances in the physical and chemical conditions of the oceans and land surface. Although global change has been a natural process throughout Earth’s history, humans are responsible for substantially accelerating present-day changes. These changes may adversely affect human health and the biosphere on which we depend. Outbreaks of a number of diseases, including Lyme disease, hantavirus infections, dengue fever, bubonic plague, and cholera, have been linked to climate change.” A comprehensive body of scientific evidence indicates beyond reasonable doubt that global climate change is now occurring and that its manifestations threaten the stability of societies as well as natural and managed ecosystems. Increases in ambient temperatures and changes in related processes are directly linked to rising anthropogenic greenhouse gas (GHG) concentrations in the atmosphere. The potential related impacts of climate change on the ability of agricultural systems, which include soil and water resources, to provide food, feed, fiber, and fuel, and maintenance of ecosystem services (e.g., water supply and habitat for crop landraces, wild relatives, and pollinators) as well as the integrity of the environment, are major concerns. Around the world and in the United States (US), agriculture—which is comprised of field, vegetable, and tree crops, as well as livestock production—constitutes a major land use which influences global ecosystems. Globally, crop production occupies approximately 1.8 Billion (B) hectares out of a total terrestrial land surface of about 13.5 B hectares. In addition, animal production utilizes grasslands, rangelands, and savannas, which altogether cover about a quarter of the Earth’s land. Even in 2010, agriculture remains the most basic and common human occupation on the planet and a major contributor to human well-being. Changes in climate are already affecting the sustainability of agricultural systems and disrupting production. [The May 2011 statement was also signed by the Crop Science Society of America and the Soil Science Society of America.] [The ASoA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] There is strong evidence that the climate is changing and will continue to change.  Climate scientists project that there will be substantial increases in temperature with related increases in atmospheric water vapor and increases in extreme precipitation amounts and intensities in most geographic regions as a result of climate change.  However, while there is clear evidence of a changing climate, understanding the significance of climate change at the temporal and spatial scales as it relates to engineering practice is more difficult. There is an increasing demand for engineers to address future climate change into project design criteria; however, current practices and rules governing such practices do not adequately address concerns associated with climate change… Climate change poses a potentially serious impact on worldwide water resources, energy production and use, agriculture, forestry, coastal development and resources, flood control and public infrastructure… The ASIH is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The ASN is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf [The ASPB is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] Adopted by the ASA Board of Directors The American Statistical Association (ASA) recently convened a workshop of leading atmospheric scientists and statisticians involved in climate change research. The goal of this workshop was to identify a consensus on the role of statistical science in current assessments of global warming and its impacts. Of particular interest to this workshop was the recently published Fourth Assessment Report of the United Nations’ Intergovernmental Panel on Climate Change (IPCC), endorsed by more than 100 governments and drawing on the expertise of a large portion of the climate science community. Through a series of meetings spanning several years, IPCC drew in leading experts and assessed the relevant literature in the geosciences and related disciplines as it relates to climate change. The Fourth Assessment Report finds that “Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising mean sea level. … Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations. … Discernible human influences now extend to other aspects of climate, including ocean warming, continental-average temperatures, temperature extremes, and wind patterns. [The ASA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] After people, water is our most critical and strategic natural resource, yet the U.S. lack a national strategy for water resources management. In addition, Americans are the world’s largest water consumers. Threats of an aging infrastructure, climate change and population growth are so significant that the nation can no longer afford to postpone action. It’s imperative that a focused effort be articulated and initiated to create and demonstrate strategies to sustain U.S. water resources. The country’s future growth and prosperity depend on it. The ATS is also a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The ASLO is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The ATBC is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The AERC is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The AAFA is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ There is broad scientific consensus that coral reefs are heavily affected by the activities of man and there are significant global influences that can make reefs more vulnerable such as global warming… It is highly likely that coral bleaching has been exacerbated by global warming. There is almost total consensus among experts that the earth’s climate is changing as a result of the build-up of greenhouse gases. The IPCC (involving over 3,000 of the world’s experts) has come out with clear conclusions as to the reality of this phenomenon. One does not have to look further than the collective academy of scientists worldwide to see the string (of) statements on this worrying change to the earth’s atmosphere… Given the observed damage caused by a temperature increase of ~1°C above pre-industrial levels, we urge all possible actions to keep future warming below the 1.5°C target set by the Paris Agreement. The following proposed initiatives will act to reduce the severity of climate-inflicted damage on reefs, helping to avoid total ecological collapse. The ACRS strongly supports the following proposed actions… The AIP supports a reduction of the green house gas emissions that are leading to increased global temperatures, and encourages research that works towards this goal… Research in Australia and overseas shows that an increase in global temperature will adversely affect the Earth’s climate patterns. The melting of the polar ice caps, combined with thermal expansion, will lead to rises in sea levels that may impact adversely on our coastal cities. The impact of these changes on biodiversity will fundamentally change the ecology of Earth… Human health is ultimately dependent on the health of the planet and its ecosystem. The AMA recognises the latest findings regarding the science of climate change, the role of humans, past observations and future projections. The consequences of climate change have serious direct and indirect, observed and projected health impacts both globally and in Australia. There is inequity in the distribution of these health impacts both within and between countries, with some groups being particularly vulnerable. In recognition of these issues surrounding climate change and health, the AMA believes that: Global climate has changed substantially. Global climate change and global warming are real and observable… Human influence has been detected in the warming of the atmosphere and the ocean globally, and in Australia. It is now certain that the human activities that have increased the concentration of greenhouse gases in the atmosphere contribute significantly to observed warming. Further it is extremely likely that these human activities are responsible for most of the observed global warming since 1950. The warming associated with increases in greenhouse gases originating from human activity is called the enhanced greenhouse effect…. Our climate is very likely to continue to change as a result of human activity. Global temperature increases are already set to continue until at least the middle of this century even if emissions were reduced to zero. The magnitude of warming and related changes can be limited depending on the total amount of carbon dioxide and other greenhouse gases ultimately emitted as a result of human activities; future climate scenarios depend critically on future changes in emissions… BioQUEST is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The BSA is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf We, the members of the Board of Trustees of CFCAS and Canadian climate science leaders from the public and academic sectors in Canada, concur with The Joint Science Academies statement that “climate change is real” and note that the 2004 Arctic Climate Impact Assessment concluded that Arctic temperatures have risen at almost twice the rate of the rest of the world over the past few decades. Furthermore, we endorse the assessment of climate science undertaken by the Intergovernmental Panel on Climate Change (IPCC) and its conclusion that “There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities.” There is now increasing unambiguous evidence of a changing climate in Canada and around the world… There is an increasing urgency to act on the threat of climate change. Significant steps are needed to stop the growth in atmospheric greenhouse gas concentrations by reducing emissions. Since mitigation measures will become effective only after many years, adaptive strategies as well are of great importance and need to begin now…. …Since the industrial revolution of the early 19th century, human activities have also markedly influenced the climate. This well-documented human-induced change is large and very rapid in comparison to past changes in the Earth’s climate… Even if the human-induced emission of greenhouse gases into the atmosphere were to cease today, past emissions have committed the world to long-term changes in climate. Carbon dioxide emitted from the combustion of fossil fuels will remain in the atmosphere for centuries to millennia, and the slow ocean response to atmospheric warming will cause the climate change to persist even longer. Further CO2 emissions will lead to greater human-induced change in proportion to total cumulative emissions. Meaningful interventions to mitigate climate change require a reduction in emissions. To avoid societally, economically, and ecologically disruptive changes to the Earth’s climate, we will have little choice but to leave much of the unextracted fossil fuel carbon in the ground… The urgent challenges for the global community, and Canadians in particular, are to learn how to adapt to the climate changes to which we are already committed and to develop effective and just responses to avoid further damaging climate change impacts for both present and future generations. The COL is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf A comprehensive body of scientific evidence indicates beyond reasonable doubt that global climate change is now occurring and that its manifestations threaten the stability of societies as well as natural and managed ecosystems. Increases in ambient temperatures and changes in related processes are directly linked to rising anthropogenic greenhouse gas (GHG) concentrations in the atmosphere. The potential related impacts of climate change on the ability of agricultural systems, which include soil and water resources, to provide food, feed, fiber, and fuel, and maintenance of ecosystem services (e.g., water supply and habitat for crop landraces, wild relatives, and pollinators) as well as the integrity of the environment, are major concerns. Around the world and in the United States (US), agriculture—which is comprised of field, vegetable, and tree crops, as well as livestock production—constitutes a major land use which influences global ecosystems. Globally, crop production occupies approximately 1.8 Billion (B) hectares out of a total terrestrial land surface of about 13.5 B hectares. In addition, animal production utilizes grasslands, rangelands, and savannas, which altogether cover about a quarter of the Earth’s land. Even in 2010, agriculture remains the most basic and common human occupation on the planet and a major contributor to human well-being. Changes in climate are already affecting the sustainability of agricultural systems and disrupting production. [The May 2011 Statement was also signed by the American Society of Agronomy and the Soil Science Society of America.] [The CSSA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] Ecosystems are already responding to climate change. Continued warming—some of which is now unavoidable—may impair the ability of many such systems to provide critical resources and services like food, clean water, and carbon sequestration. Buffering against the impacts of climate change will require new strategies to both mitigate the extent of change and adapt to changes that are inevitable. The sooner such strategies are deployed, the more effective they will be in reducing irreversible damage. Ecosystems can be managed to limit and adapt to both the near- and long-term impacts of climate change. Strategies that focus on restoring and maintaining natural ecosystem function (reducing deforestation, for example) are the most prudent; strategies that drastically alter ecosystems may have significant and unpredictable impacts… The Earth is warming— average global temperatures have increased by 0.74°C (1.3°F) in the past 100 years. The scientific community agrees that catastrophic and possibly irreversible environmental change will occur if average global temperatures rise an additional 2°C (3.6°F). Warming to date has already had significant impacts on the Earth and its ecosystems, including increased droughts, rising sea levels, disappearing glaciers, and changes in the distribution and seasonal activities of many species… Most warming seen since the mid 1900s is very likely due to greenhouse gas emissions from human activities. Global emissions have risen rapidly since pre-industrial times, increasing 70% between 1970 and 2004 alone… Even if greenhouse gas emissions stop immediately, global temperatures will continue to rise at least for the next 100 years. Depending on the extent and effectiveness of climate change mitigation strategies, global temperatures could rise 1-6°C (2-10°F) by the end of the 21st century, according to the Intergovernmental Panel on Climate Change. Swift and significant emissions reductions will be vital in minimizing the impacts of warming… [The ESA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] Engineers Australia accepts the comprehensive scientific basis regarding climate change, the influence of anthropogenic global warming, and that climate change can have very serious community consequences. Engineers are uniquely placed to provide both mitigation and adaptation solutions for this serious global problem, as well as address future advances in climate change science. This Climate Change Policy Statement has been developed to enable organisational governance on the problem, and provide support for members in the discipline and practice of the engineering profession. Building upon a long history of Engineers Australia policy development, and as the largest technically informed professional body in Australia, Engineers Australia advocates that Engineers must act proactively to address climate change as an ecological, social and economic risk… The ESA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf Human activity is most likely responsible for climate warming. Most of the climatic warming over the last 50 years is likely to have been caused by increased concentrations of greenhouse gases in the atmosphere. Documented long-term climate changes include changes in Arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. The above development potentially has dramatic consequences for mankind’s future… The EFG recognizes the work of the IPCC and other organizations, and subscribes to the major findings that climate change is happening, is predominantly caused by anthropogenic emissions of CO2, and poses a significant threat to human civilization. Anthropogenic CO2 emissions come from fossil carbon sources, such as coal, oil, natural gas, limestone and carbonate rocks. Thriving and developing economies currently depend on these resources. Since geologists play a crucial role in their exploration and exploitation, we feel praised by the increasing welfare, but also implicated by the carbon curse. It is clear that major efforts are necessary to quickly and strongly reduce CO2 emissions. The EFG strongly advocates renewable and sustainable energy production, including geothermal energy, as well as the need for increasing energy efficiency. Impacts of ocean acidification may be just as dramatic as those of global warming (resulting from anthropogenic activities on top of natural variability) and the combination of both are likely to exacerbate consequences, resulting in potentially profound changes throughout marine ecosystems and in the services that they provide to humankind… Since the beginning of the industrial revolution the release of carbon dioxide (CO ) from our industrial and agricultural activities has resulted in atmospheric CO  concentrations that have increased from approximately 280 to 385 parts per million (ppm). The atmospheric concentration of CO  is now higher than experienced on Earth for at least the last 800,000 years (direct ice core evidence) and probably the last 25 million years, and is expected to continue to rise at an increasing rate, leading to significant temperature increases in the atmosphere and ocean in the coming decades… Ocean acidification is already occurring today and will continue to intensify, closely tracking atmospheric CO2 increase. Given the potential threat to marine ecosystems and its ensuing impact on human society and economy, especially as it acts in conjunction with anthropogenic global warming, there is an urgent need for immediate action. This rather new recognition that, in addition to the impact of CO  as a greenhouse gas on global climate change, OA is a direct consequence of the absorption of anthropogenic CO  emissions, will hopefully help to set in motion an even more stringent CO  mitigation policy worldwide. The only solutions to avoid excessive OA are a long-term mitigation strategy to limit future release of CO  to the atmosphere and/or enhance removal of excess CO  from the atmosphere. The emission of anthropogenic greenhouse gases, among which carbon dioxide is the main contributor, has amplified the natural greenhouse effect and led to global warming. The main contribution stems from burning fossil fuels. A further increase will have decisive effects on life on earth. An energy cycle with the lowest possible CO2 emission is called for wherever possible to combat climate change. The forthcoming United Nations Climate Change Conference (Paris, December 2015) will be held with the objective of achieving a binding and global agreement on climate-related policy from all nations of the world. This conference, seeking to protect the climate, will be a great opportunity to find solutions in the human quest for sustainable energy as a global endeavour. The Energy Group of the European Physical Society (EPS) welcomes the energy policy of the European Union (EU) to promote renewable energies for electricity generation, together with energy efficiency measures. This policy needs to be implemented by taking into account the necessary investments and the impact on the economical position of the EU in the world. Since the direct impact of any EU energy policy on world CO2 emissions is rather limited, the best strategy is to take the lead in mitigating climate change and in developing an energy policy that offers an attractive and economically viable model with reduced CO2 emissions and lower energy dependence… The scientific evidence is now overwhelming that climate change is a serious global threat which requires an urgent global response, and that climate change is driven by human activity… Enough is now known to make climate change the challenge of the 21st century, and the research community is poised to address this challenge… There is now convincing evidence that since the industrial revolution, human activities, resulting in increasing concentrations of greenhouse gases have become a major agent of climate change. These greenhouse gases affect the global climate by retaining heat in the troposphere, thus raising the average temperature of the planet and altering global atmospheric circulation and precipitation patterns. While on-going national and international actions to curtail and reduce greenhouse gas emissions are essential, the levels of greenhouse gases currently in the atmosphere, and their impact, are likely to persist for several decades. On-going and increased efforts to mitigate climate change through reduction in greenhouse gases are therefore crucial… The European Space Sciences Committee (ESSC) supports the Article (2) agreement on climate change of the Declaration of the ‘2015 Budapest World Science Forum on the enabling power of science’ urges such a universal agreement aiming at stabilising atmospheric concentrations of greenhouse gases and reducing the amount of airborne particles. The ESSC encourages countries to reduce their emissions in order to avoid dangerous anthropogenic interference with the climate system, which could lead to disastrous consequences. Such consequences, albeit from natural evolution, are witnessed in other objects of our Solar System. Global climate change is real and measurable. Since the start of the 20th century, the global mean surface temperature of the Earth has increased by more than 0.7°C and the rate of warming has been largest in the last 30 years… Key vulnerabilities arising from climate change include water resources, food supply, health, coastal settlements, biodiversity and some key ecosystems such as coral reefs and alpine regions. As the atmospheric concentration of greenhouse gases increases, impacts become more severe and widespread. To reduce the global net economic, environmental and social losses in the face of these impacts, the policy objective must remain squarely focused on returning greenhouse gas concentrations to near pre-industrial levels through the reduction of emissions… The spatial and temporal fingerprint of warming can be traced to increasing greenhouse gas concentrations in the atmosphere, which are a direct result of burning fossil fuels, broad-scale deforestation and other human activity. Decades of scientific research have shown that climate can change from both natural and anthropogenic causes. The Geological Society of America (GSA) concurs with assessments by the National Academies of Science (2005), the National Research Council (2011), the Intergovernmental Panel on Climate Change (IPCC, 2013) and the U.S. Global Change Research Program (Melillo et al., 2014) that global climate has warmed in response to increasing concentrations of carbon dioxide (CO2) and other greenhouse gases. The concentrations of greenhouse gases in the atmosphere are now higher than they have been for many thousands of years. Human activities (mainly greenhouse-gas emissions) are the dominant cause of the rapid warming since the middle 1900s (IPCC, 2013). If the upward trend in greenhouse-gas concentrations continues, the projected global climate change by the end of the twenty-first century will result in significant impacts on humans and other species. The tangible effects of climate change are already occurring. Addressing the challenges posed by climate change will require a combination of adaptation to the changes that are likely to occur and global reductions of CO2 emissions from anthropogenic sources… [The GSA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] The HCWH is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The HCCC is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ Human activities have increased the concentration of these atmospheric greenhouse gases, and although the changes are relatively small, the equilibrium maintained by the atmosphere is delicate, and so the effect of these changes is significant. The world’s most important greenhouse gas is carbon dioxide, a by-product of the burning of fossil fuels. … Professional engineers commonly deal with risk, and frequently have to make judgments based on incomplete data. The available evidence suggests very strongly that human activities have already begun to make significant changes to the earth’s climate, and that the longterm risk of delaying action is greater than the cost of avoiding/minimising the risk. Scientific evidence is overwhelming that current energy trends are unsustainable. Immediate action is required to effect change in the timeframe needed to address significant ecological, human health and development, and energy security needs. Aggressive changes in policy are thus needed to accelerate the deployment of superior technologies. With a combination of such policies at the local, national, and international level, it should be possible—both technically and economically—to elevate the living conditions of most of humanity, while simultaneously addressing the risks posed by climate change and other forms of energy-related environmental degradation and reducing the geopolitical tensions and economic vulnerabilities generated by existing patterns of dependence on predominantly fossil-fuel resources… The Study Panel believes that, given the dire prospect of climate change, the following three recommendations should be acted upon without delay and simultaneously: Taking into account the three urgent recommendations above, another recommendation stands out by itself as a moral and social imperative and should be pursued with all means available While the Earth’s climate has changed many times during the planet’s history because of natural factors, including volcanic eruptions and changes in the Earth’s orbit, never before have we observed the present rapid rise in temperature and carbon dioxide (CO ). Human activities resulting from the industrial revolution have changed the chemical composition of the atmosphere…. Deforestation is now the second largest contributor to global warming, after the burning of fossil fuels. These human activities have significantly increased the concentration of “greenhouse gases” in the atmosphere… As the Earth’s climate warms, we are seeing many changes: stronger, more destructive hurricanes; heavier rainfall; more disastrous flooding; more areas of the world experiencing severe drought; and more heat waves. As reported by the Intergovernmental Panel on Climate Change (IPCC), most of the observed global warming since the mid-20th century is very likely due to human-produced emission of greenhouse gases and this warming will continue unabated if present anthropogenic emissions continue or, worse, expand without control. CAETS, therefore, endorses the many recent calls to decrease and control greenhouse gas emissions to an acceptable level as quickly as possible. There is now strong evidence that significant global warming is occurring. The evidence comes from direct measurements of rising surface air temperatures and subsurface ocean temperatures and, indirectly, from increases in average global sea levels, retreating glaciers, and changes in many physical and biological systems. It is very likely that most of the observed increase in global temperatures since the mid-twentieth century is due to human-induced increases in greenhouse gas concentrations in the atmosphere (IPCC 2007). Human activities are now causing atmospheric concentrations of greenhouse gases – including carbon dioxide, methane, tropospheric ozone, and nitrous oxide – to rise well above pre-industrial levels. Carbon dioxide levels have increased from 280 ppm in 1750 to over 380 ppm today, higher than any previous levels in at least the past 650,000 years. Increases in greenhouse gases are causing temperatures to rise; the Earth’s surface warmed by approximately 0.6°C over the twentieth century. The Intergovernmental Panel on Climate Change (IPCC) has forecast that average global surface temperatures will continue to increase, reaching between 1.1°C and 6.4°C above 1990 levels, by 2100. The uncertainties about the amount of global warming we face in coming decades can be reduced through further scientific research. Part of this research must be better documenting and understanding past climate change. Research on Earth’s climate in the recent geologic past provides insights into ways in which climate can change in the future. It also provides data that contribute to the testing and improvement of the computer models that are used to predict future climate change. Reduce the causes of climate change The scientific understanding of climate change is now sufficiently clear to justify nations taking prompt action. A lack of full scientific certainty about some aspects of climate change is not a reason for delaying an immediate response that will, at a reasonable cost, prevent dangerous anthropogenic interference with the climate system. It is vital that all nations identify cost-effective steps that they can take now to contribute to substantial and long-term reduction in net global greenhouse gas emissions. Action taken now to reduce significantly the build-up of greenhouse gases in the atmosphere will lessen the magnitude and rate of climate change. Fossil fuels, which are responsible for most of carbon dioxide emissions produced by human activities, provide valuable resources for many nations and will provide 85% of the world energy demand over the next 25 years (IEA 2004). Minimizing the amount of this carbon dioxide reaching the atmosphere presents a huge challenge but must be a global priority. The advances in scientific understanding of the Earth system generated by collaborative international, regional, and national observations and research programs; and The comprehensive and widely accepted and endorsed scientific assessments carried out by the Intergovernmental Panel on Climate Change and regional and national bodies, which have firmly established, on the basis of scientific evidence, that human activities are the primary cause of recent climate change; Continuing reliance on combustion of fossil fuels as the world’s primary source of energy will lead to much higher atmospheric concentrations of greenhouse gases, which will, in turn, cause significant increases in surface temperature, sea level, ocean acidification, and their related consequences to the environment and society; Stabilization of climate to avoid “dangerous anthropogenic interference with the climate system”, as called for in the UN Framework Convention on Climate Change, will require significant cutbacks in greenhouse gas emissions during the 21st century; and Mitigation of and adaptation to climate change can be made more effective by reducing uncertainties regarding feedbacks and the associated mechanisms; Nations collectively to begin to reduce sharply global atmospheric emissions of greenhouse gases and absorbing aerosols, with the goal of urgently halting their accumulation in the atmosphere and holding atmospheric levels at their lowest practicable value; National and international agencies to adequately support comprehensive observation and research programs that can clarify the urgency and extent of needed mitigation and promote adaptation to the consequences of climate change; Resource managers, planners, and leaders of public and private organizations to incorporate information on ongoing and projected changes in climate and its ramifications into their decision-making, with goals of limiting emissions, reducing the negative consequences of climate change, and enhancing adaptation, public well-being, safety, and economic vitality; and Organizations around the world to join with IUGG and its member Associations to encourage scientists to communicate freely and widely with public and private decision-makers about the consequences and risks of on-going climate change and actions that can be taken to limit climate change and promote adaptation; and To act with its member Associations to develop and implement an integrated communication and outreach plan to increase public understanding of the nature and implications of human-induced impacts on the Earth system, with the aim of reducing detrimental consequences. The LMS is a signatory to the July 21, 2015 UK science communiqué on climate change The NACCHO is a signatory to the April 2016 declaration: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The National Association of Geoscience Teachers (NAGT) recognizes: (1) that Earth’s climate is changing, (2) that present warming trends are largely the result of human activities, and (3) that teaching climate change science is a fundamental and integral part of earth science education. The core mission of NAGT is to “foster improvement in the teaching of the earth sciences at all levels of formal and informal instruction, to emphasize the cultural significance of the earth sciences and to disseminate knowledge in this field to the general public.” The National Science Education Standards call for a populace that understands how scientific knowledge is both generated and verified, and how complex interactions between human activities and the environment can impact the Earth system. Climate is clearly an integral part of the Earth system connecting the physical, chemical and biological components and playing an essential role in how the Earth’s environment interacts with human culture and societal development. Thus, climate change science is an essential part of Earth Science education and is fundamental to the mission set forth by NAGT. In recognition of these imperatives, NAGT strongly supports and will work to promote education in the science of climate change, the causes and effects of current global warming, and the immediate need for policies and actions that reduce the emission of greenhouse gases. The NAHN is a signatory to the April 2016 declaration: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The NAML is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The NEHA is a signatory to the April 2016 declaration: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The NMA is a signatory to the April 2016 declaration: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ Many national science academies have published formal statements and declarations acknowledging the state of climate science, the fact that climate is changing, the compelling evidence that humans are responsible, and the need to debate and implement strategies to reduce emissions of greenhouse gases. A few examples of joint academy statements are listed here. Following the release of the third in the ongoing series of international reviews of climate science conducted by the Intergovernmental Panel on Climate Chang (IPCC), seventeen national science academies issued a joint statement, entitled “The Science of Climate Change,” acknowledging the IPCC study to be the scientific consensus on climate change science. The statement was signed by: Australian Academy of Sciences, Royal Flemish Academy of Belgium for Sciences and the Arts, Brazilian Academy of Sciences, Royal Society of Canada, Caribbean Academy of Sciences, Chinese Academy of Sciences, French Academy of Sciences, German Academy of Natural Scientists Leopoldina, Indian National Science Academy, Indonesian Academy of Sciences, Royal Irish Academy, Accademia Nazionale dei Lincei (Italy), Academy of Sciences Malaysia, Academy Council of the Royal Society of New Zealand, Royal Swedish Academy of Sciences, Turkish Academy of Sciences, and Royal Society (UK). Eleven national science academies, including all of the largest emitters of greenhouse gases, signed a statement that the scientific understanding of climate change was sufficiently strong to justify prompt action. The statement explicitly endorsed the IPCC consensus and stated: “…there is now strong evidence that significant global warming is occurring. The evidence comes from direct measurements of rising surface air temperatures and subsurface ocean temperatures and from phenomena such as increases in average global sea levels, retreating glaciers, and changes to many physical and biological systems. It is likely that most of the warming in recent decades can be attributed to human activities (IPCC 2001). This warming has already led to changes in the Earth’s climate.” The statement was signed by the science academies of: Brazil, Canada, China, France, Germany, India, Italy, Japan, Russia, the United Kingdom, and the United States. In 2007, seventeen national academies issued a joint declaration reconfirming previous statements and strengthening language based on new research from the fourth assessment report of the IPCC, including the following: “It is unequivocal that the climate is changing, and it is very likely that this is predominantly caused by the increasing human interference with the atmosphere. These changes will transform the environmental conditions on Earth unless counter-measures are taken.” The thirteen signatories were the national science academies of Brazil, Canada, China, France, Germany, Italy, India, Japan, Mexico, Russia, South Africa, the United Kingdom, and the United States. In 2007, the Network of African Science Academies submitted a joint “statement on sustainability, energy efficiency, and climate change:” “A consensus, based on current evidence, now exists within the global scientific community that human activities are the main source of climate change and that the burning of fossil fuels is largely responsible for driving this change. The Intergovernmental Panel on Climate Change (IPCC) reached this conclusion with “90 percent certainty” in its Fourth Assessment issued earlier this year. The IPCC should be congratulated for the contribution it has made to public understanding of the nexus that exists between energy, climate and sustainability.” The thirteen signatories were the science academies of Cameroon, Ghana, Kenya, Madagascar, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda, Zambia, Zimbabwe, as well as the African Academy of Sciences. In 2008, the thirteen signers of the 2007 joint academies declaration issued a statement reiterating previous statements and reaffirming “that climate change is happening and that anthropogenic warming is influencing many physical and biological systems.” Among other actions, the declaration urges all nations to “(t)ake appropriate economic and policy measures to accelerate transition to a low carbon society and to encourage and effect changes in individual and national behaviour.” The thirteen signatories were the national science academies of Brazil, Canada, China, France, Germany, Italy, India, Japan, Mexico, Russia, South Africa, the United Kingdom, and the United States. In May 2009, thirteen national academies issued a joint statement that said among other things: “The IPCC 2007 Fourth Assessment of climate change science concluded that large reductions in the emissions of greenhouse gases, principally CO2, are needed soon to slow the increase of atmospheric concentrations, and avoid reaching unacceptable levels. However, climate change is happening even faster than previously estimated; global CO2 emissions since 2000 have been higher than even the highest predictions, Arctic sea ice has been melting at rates much faster than predicted, and the rise in the sea level has become more rapid. Feedbacks in the climate system might lead to much more rapid climate changes. The need for urgent action to address climate change is now indisputable.” The thirteen signatories were the national science academies of Brazil, Canada, China, France, Germany, Italy, India, Japan, Mexico, Russia, South Africa, the United Kingdom, and the United States. In addition to the statement signed in 2001 by the Royal Flemish Academy of Belgium for Sciences and the Arts, the Academie Royale des Sciences, des Lettres & des Beaux-arts de Belgique (the French language academy in Belgium) issued a formal statement: In July 2015, the Royal Society and member organizations issued a joint “U.K. Science Communiqué on Climate Change.” In part, that statement reads: “The scientific evidence is now overwhelming that the climate is warming and that human activity is largely responsible for this change through emissions of greenhouse gases. Governments will meet in Paris in November and December this year to negotiate a legally binding and universal agreement on tackling climate change. Any international policy response to climate change must be rooted in the latest scientific evidence. This indicates that if we are to have a reasonable chance of limiting global warming in this century to 2°C relative to the pre-industrial period, we must transition to a zero-carbon world by early in the second half of the century. To achieve this transition, governments should demonstrate leadership by recognising the risks climate change poses, embracing appropriate policy and technological responses, and seizing the opportunities of low-carbon and climate-resilient growth.” It was signed by: The Academy of Medical Sciences (UK), The Academy of Social Sciences (UK), The British Academy for the Humanities and Social Sciences, The British Ecological Society, The Geological Society (UK), The Challenger Society for Marine Sciences, The Institution of Civil Engineers (UK), The Institution of Chemical Engineers, The Institution of Environmental Sciences, The Institute of Physics, The Learned Society of Wales, London Mathematical Society, Royal Astronomical Society, Royal Economic Society, Royal Geographic Society, Royal Meteorological Society, Royal Society, Royal Society of Biology, Royal Society of Chemistry, Royal Society of Edinburgh, Society for General Microbiology, Wellcome Trust, Zoological Society of London Climate change is occurring, is caused largely by human activities, and poses significant risks for — and in many cases is already affecting — a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America’s Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. [The U.S. National Academies of Sciences have also signed a long series of statements with other national academies around the world in support of the state-of-the-science.] The NSCA is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf Acid rain, toxic air pollutants, and greenhouse gas emissions are a major threat to human health and welfare, as well as plant and animal life. Based on recognized adequate research of the causes and effects of the various forms of air pollution, the federal government should establish environmentally and economically sound standards for the reduction and control of these emissions. The OBFS is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The PHI is a signatory to the April 2016 declaration: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The RAS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The RES is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The RGS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The Fourth Assessment Report (AR4) of the Inter-Governmental Panel on Climate Change (IPCC) is unequivocal in its conclusion that climate change is happening and that humans are contributing significantly to these changes. The evidence, from not just one source but a number of different measurements, is now far greater and the tools we have to model climate change contain much more of our scientific knowledge within them. The world’s best climate scientists are telling us it’s time to do something about it. Carbon Dioxide is such an important greenhouse gas because there is an increasing amount of it in the atmosphere from the burning of fossil fuels and it stays in the atmosphere for such a long time; a hundred years or so. The changes we are seeing now in our climate are the result of emissions since industrialisation and we have already set in motion the next 50 years of global warming – what we do from now on will determine how worse it will get. The RMS is also a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The RS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth’s climate. The atmosphere and oceans have warmed, accompanied by sea-level rise, a strong decline in Arctic sea ice, and other climate-related changes. The evidence is clear. We strongly support the introduction of policies to significantly reduce UK and global greenhouse gas emissions, as we feel that the consequences of climate change will be severe. We believe that biologists have a crucial role to play in developing innovative biotechnologies to generate more efficient and environmentally sustainable biofuels, and to capture and store greenhouse gases from power stations and the atmosphere. It is important for the government to continue to consult scientists, to review policy, and to encourage new technologies so as to ensure the best possible strategies are used to combat this complex issue. We are in favour of reducing energy demands, in particular by improvements in public transport and domestic appliances. As some degree of climate change is inevitable, we encourage the development of adaptation strategies to reduce the effects of global warming on our environment. There is an overwhelming scientific consensus worldwide, and a broad political consensus, that greenhouse gas emissions are affecting global climate, and that measures are needed to reduce these emissions significantly so as to limit the extent of climate change. The term ‘climate change’ is used predominantly to refer to global warming and its consequences, and this policy briefing will address these issues. Although long-term fluctuations in global temperature occur due to various factors such as solar activity, there is scientific agreement that the rapid global warming that has occurred in recent years is mostly anthropogenic, i.e. due to human activity. The absorption and emission of solar radiation by greenhouse gases causes the atmosphere to warm. Human activities such as fossil fuel consumption and deforestation have elevated atmospheric levels of greenhouse gases such as carbon dioxide, methane and nitrous oxide significantly since pre-industrial times. The RSB is also a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The RSC is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The RSE is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and oceans have warmed, the amounts of snow and ice have diminished, and sea level has risen. Global surface temperatures have warmed, on average, by around one degree Celsius since the late 19th century. Much of the warming, especially since the 1950s, is very likely a result of increased amounts of greenhouse gases in the atmosphere, resulting from human activity. The Northern Hemisphere have warmed much faster than the global average, while the southern oceans south of New Zealand latitudes have warmed more slowly. Generally, continental regions have warmed more than the ocean surface at the same latitudes. Global sea levels have risen around 19 cm since the start of the 20th century, and are almost certain to rise at a faster rate in future. Surface temperature is projected to rise over the 21st century under all assessed emission scenarios. It is very likely that heat waves will occur more often and last longer, and that extreme precipitation events will become more intense and frequent in many regions. The ocean will continue to warm and acidify, and global mean sea level will continue to rise. Relatively small changes in average climate can have a big effect on the frequency of occurrence or likelihood of extreme events. How the future plays out depends critically on the emissions of greenhouses gases that enter the atmosphere over coming decades. New Zealand is being affected by climate change and impacts are set to increase in magnitude and extent over time. Floods, storms, droughts and fires will become more frequent unless significant action is taken to reduce global emissions of greenhouse gases, which are changing the climate. Even small changes in average climate conditions are likely to lead to large changes in the frequency of occurrence of extreme events. Our societies are not designed to cope with such rapid changes. The SGM is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The SIAM is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The SMB is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The SSAR is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The Society of American Foresters (SAF) believes that climate change policies and actions should recognize the role that forests play in reducing greenhouse gas (GHG) emissions through 1) the substitution of wood products for nonrenewable building materials, 2) forest biomass substitution for fossil fuel-based energy sources, 3) reducing wildfire and other disturbance emissions, and 4) avoided land-use change. SAF also believes that sustainably managed forests can reduce GHG concentrations by sequestering atmospheric carbon in trees and soil, and by storing carbon in wood products made from the harvested trees. Finally, climate change policies can invest in sustainable forest management to achieve these benefits, and respond to the challenges and opportunities that a changing climate poses for forests. Of the many ways to reduce GHG emissions and atmospheric particulate pollution, the most familiar are increasing energy efficiency and conservation, and using renewable energy sources as a substitution for fossil fuels. Equally important is using forests to address climate change. Forests play an essential role controlling GHG emissions and atmospheric GHGs, while simultaneously providing essential environmental and social benefits, including clean water, wildlife habitat, recreation, and forest products that, in turn, store carbon. Finally, changes in long-term patterns of temperature and precipitation have the potential to dramatically affect forests nationwide through a variety of changes to growth and mortality (USDA Forest Service 2012). Many such changes are already evident, such as longer growing and wildfire seasons, increased incidence of pest and disease, and climate-related mortality of specific species (Westerling et al. 2006). These changes have been associated with increasing concentrations of atmospheric carbon dioxide (CO2) and other GHGs in the atmosphere. Successfully achieving the benefits forests can provide for addressing climate change will therefore require explicit and long-term policies and investment in managing these changes, as well as helping private landowners and public agencies understand the technologies and practices that can be used to respond to changing climate conditions… The SoN is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf The SSB is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf A comprehensive body of scientific evidence indicates beyond reasonable doubt that global climate change is now occurring and that its manifestations threaten the stability of societies as well as natural and managed ecosystems. Increases in ambient temperatures and changes in related processes are directly linked to rising anthropogenic greenhouse gas (GHG) concentrations in the atmosphere. The potential related impacts of climate change on the ability of agricultural systems, which include soil and water resources, to provide food, feed, fiber, and fuel, and maintenance of ecosystem services (e.g., water supply and habitat for crop landraces, wild relatives, and pollinators) as well as the integrity of the environment, are major concerns. Around the world and in the United States (US), agriculture—which is comprised of field, vegetable, and tree crops, as well as livestock production—constitutes a major land use which influences global ecosystems. Globally, crop production occupies approximately 1.8 Billion (B) hectares out of a total terrestrial land surface of about 13.5 B hectares. In addition, animal production utilizes grasslands, rangelands, and savannas, which altogether cover about a quarter of the Earth’s land. Even in 2010, agriculture remains the most basic and common human occupation on the planet and a major contributor to human well-being. Changes in climate are already affecting the sustainability of agricultural systems and disrupting production. [The May 2011 Statement was also signed by the American Society of Agronomy and the Crop Science Society of America.] [The SSSA is also a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf] The AMS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The AoSS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The BAHSS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The BES is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The CSMS is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The last century has seen a rapidly growing global population and much more intensive use of resources, leading to greatly increased emissions of gases, such as carbon dioxide and methane, from the burning of fossil fuels (oil, gas and coal), and from agriculture, cement production and deforestation. Evidence from the geological record is consistent with the physics that shows that adding large amounts of carbon dioxide to the atmosphere warms the world and may lead to: higher sea levels and flooding of low-lying coasts; greatly changed patterns of rainfall; increased acidity of the oceans; and decreased oxygen levels in seawater… There is now widespread concern that the Earth’s climate will warm further, not only because of the lingering effects of the added carbon already in the system, but also because of further additions as human population continues to grow… [The GS is also a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF] The IoP is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The ICE is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The ICE is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The IES is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF The LSoW is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF Human activities over the past 100 years have caused significant changes in the earth’s climatic conditions, resulting in severe alterations in regional temperature and precipitation patterns that are expected to continue and become amplified over the next 100 years or more. Although climates have varied since the earth was formed, few scientists question the role of humans in exacerbating recent climate change through the increase in emissions of greenhouse gases (e.g., carbon dioxide, methane, water vapor). Human activities contributing to climate warming include the burning of fossil fuels, slash and burn agriculture, methane production from animal husbandry practices, and land-use changes. The critical issue is no longer “whether” climate change is occurring, but rather how to address its effects on wildlife and wildlife- habitats… The TFAA is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The USCHA is a signatory to the April 2016 statement: http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/declaration-on-climate-change.html?referrer=https://www.google.com/ The UCAR is a signatory to the June 28, 2016 letter to the U.S. Congress: https://www.eurekalert.org/images/2016climateletter6-28-16.pdf Wellcome is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF Now that the world has negotiated the Paris agreement to mitigate GHGs and pursue adaptation to the changing climate, the focus must now turn towards implementation to turn the words into action. The world’s engineers are a human resource that must be tapped to contribute to this implementation. All countries use engineers to deliver services that provide the quality of life that society enjoys, in particular, potable water, sanitation, shelter, buildings, roads, bridges, power, energy and other types of infrastructure. There are opportunities to achieve GHG reduction as well as improving the climate resilience of this infrastructure through design, construction and operation all of which require the expertise and experience of engineers. Engineers are problem-solvers and seek to develop feasible solutions that are cost-effective and sustainable. Engineers serve the public interest and offer objective, unbiased review and advice. Having their expertise to evaluate the technical feasibility and economic viability of proposals to reduce GHGs and to adapt to climate change impacts should be pursued. Engineers input and action is required to implement solutions at country and local levels. The international organization known as the World Federation of Engineering Organizations consist of members of national engineering organizations from over 90 developing and developed countries representing more than 20 million engineers. The WFEO offers to facilitate contact and engagement with these organizations to identify subject matter experts that will contribute their time and expertise as members of the engineering profession. The expertise of the world’s engineers is needed to help successfully implement the Paris agreement. We encourage all countries to engage their engineers in this effort. The WFEO is prepared to assist in this effort. The WFEO consists of national members representing more than 85 countries as well as 10 regional engineering organizations. These members collectively engage with more than 20 million engineers worldwide who are committed to serve the public interest through Codes of Practice and a Code of Ethics that emphasize professional practice in sustainable development, environmental stewardship and climate change. WFEO, the International Council for Science (ICSU) and the International Social Science Council (ISSC) are co-organizing partners of the UN Major Group on Scientific and Technological Communities, one of the nine major groups of civil society recognized by the United Nations. Engineers acknowledge that climate change is underway and that sustained efforts must be undertaken to address this worldwide challenge to society, our quality of life and prosperity. Urgent actions are required and the engineering profession is prepared to do its part towards implementing cost-effective, feasible and sustainable solutions working in partnership with stakeholders. Noting the conclusions of the United Nations’ Intergovernmental Panel on Climate Change (IPCC) and other climatologists that anthropogenic greenhouse gases, which contribute to global climate change, have substantially increased in atmospheric concentration beyond natural processes and have increased by 28 percent since the industrial revolution….Realizing that subsequent health effects from such perturbations in the climate system would likely include an increase in: heat-related mortality and morbidity; vector-borne infectious diseases,… water-borne diseases…(and) malnutrition from threatened agriculture….the World Federation of Public Health Associations…recommends precautionary primary preventive measures to avert climate change, including reduction of greenhouse gas emissions and preservation of greenhouse gas sinks through appropriate energy and land use policies, in view of the scale of potential health impacts… Over the last 50 years, human activities – particularly the burning of fossil fuels – have released sufficient quantities of carbon dioxide and other greenhouse gases to trap additional heat in the lower atmosphere and affect the global climate. In the last 130 years, the world has warmed by approximately 0.85oC. Each of the last 3 decades has been successively warmer than any preceding decade since 1850. Sea levels are rising, glaciers are melting and precipitation patterns are changing. Extreme weather events are becoming more intense and frequent… Many policies and individual choices have the potential to reduce greenhouse gas emissions and produce major health co-benefits. For example, cleaner energy systems, and promoting the safe use of public transportation and active movement – such as cycling or walking as alternatives to using private vehicles – could reduce carbon emissions, and cut the burden of household air pollution, which causes some 4.3 million deaths per year, and ambient air pollution, which causes about 3 million deaths every year. In 2015, the WHO Executive Board endorsed a new work plan on climate change and health. This includes: Partnerships: to coordinate with partner agencies within the UN system, and ensure that health is properly represented in the climate change agenda. Awareness raising: to provide and disseminate information on the threats that climate change presents to human health, and opportunities to promote health while cutting carbon emissions. Science and evidence: to coordinate reviews of the scientific evidence on the links between climate change and health, and develop a global research agenda. Support for implementation of the public health response to climate change: to assist countries to build capacity to reduce health vulnerability to climate change, and promote health while reducing carbon emissions. Climate change is the greatest threat to global health in the 21st century. Health professionals have a duty of care to current and future generations. You are on the front line in protecting people from climate impacts – from more heat-waves and other extreme weather events; from outbreaks of infectious diseases such as malaria, dengue and cholera; from the effects of malnutrition; as well as treating people that are affected by cancer, respiratory, cardiovascular and other non-communicable diseases caused by environmental pollution. Already the hottest year on record, 2015 will see nations attempt to reach a global agreement to address climate change at the United Nations Climate Change Conference (COP) in Paris in December. This may be the most important health agreement of the century: an opportunity not only to reduce climate change and its consequences, but to promote actions that can yield large and immediate health benefits, and reduce costs to health systems and communities… Since the beginning of the 20th century, scientists have been observing a change in the climate that cannot be attributed solely to natural influences. This change has occurred faster than any other climate change in Earth’s history and will have consequences for future generations. Scientists agree that this climate change is anthropogenic (human-induced). It is principally attributable to the increase of certain heat absorbing greenhouse gases in our atmosphere since the industrial revolution. The ever-increasing amount of these gases has directly lead to more heat being retained in the atmosphere and thus to increasing global average surface temperatures. The partners in the WMO Global Atmosphere Watch (GAW) compile reliable scientific data and information on the chemical composition of the atmosphere and its natural and anthropogenic change. This helps to improve the understanding of interactions between the atmosphere, the oceans and the biosphere. The World Meteorological Organization has published a detailed analysis of the global climate 2011-2015 – the hottest five-year period on record  – and the increasingly visible human footprint on extreme weather and climate events with dangerous and costly impacts. The record temperatures were accompanied by rising sea levels and declines in Arctic sea-ice extent, continental glaciers and northern hemisphere snow cover. All these climate change indicators confirmed the long-term warming trend caused by greenhouse gases. Carbon dioxide reached the significant milestone of 400 parts per million in the atmosphere for the first time in 2015, according to the WMO report which was submitted to U.N. climate change conference. The Zoological Society is a signatory to the July 21, 2015 UK science communiqué on climate change. https://royalsociety.org/~/media/policy/Publications/2015/21-07-15-climate-communique.PDF [Edited, compiled by Dr. Peter Gleick. Please send any corrections, additions, updates…]


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SPECIAL PROGRAMS IN ASTRONOMY | Award Amount: 149.41K | Year: 2013

Past snapshots of the fraction of professional astronomers who are women at various career stages have suggested a higher attrition rate than for men. While anecdotal evidence suggests possible reasons, reliable statistical data and analyses are lacking. This award will enable the PI to follow a cohort of men and women astronomers over a decade, track the decisions they make, and make links to underlying causes. The time period is key to success, collecting data from the cohort in three staged surveys. The award will support the analysis of data from the second survey round, the preparation of the third survey and its analysis, and linking together the ultimate findings and conclusions from the complete program. Using data from all three rounds, the Longitudinal Study will ultimately: (1) provide detailed data on trends in employment over 10+ years for a single cohort, (2) collect data on people who leave the field of astronomy during or after graduate school, (3) determine whether there are sex differences in attrition from astronomy and reasons for this, and (4) examine factors that precede decisions to persist in, or leave, the field of astronomy.


News Article | February 22, 2017
Site: www.materialstoday.com

We are surrounded by many different forms of energy: sunlight, the heat in a room and even our own movements. All that energy – normally wasted – could potentially help power portable and wearable gadgets, from biometric sensors to smart watches. Now, researchers from the University of Oulu in Finland have found that a mineral with a perovskite crystal structure has the right properties to extract energy from multiple sources at the same time. Many members of the perovskite family of minerals have shown promise for harvesting one or two types of energy at a time – but not simultaneously. One family member may be good for solar cells, with the right properties for efficiently converting solar energy into electricity. Meanwhile, another is adept at harnessing energy from changes in temperature or pressure, which can arise from motion, making them so-called pyroelectric and piezoelectric materials, respectively. Sometimes, however, just one type of energy isn't enough. A given form of energy isn't always available – maybe it's cloudy or difficult to get up to move around, such as when driving. Other researchers have developed devices that can harness multiple forms of energy, but they require multiple materials, adding bulk to what's supposed to be a small and portable device. In a paper in Applied Physics Letters, Yang Bai and his colleagues at the University of Oulu outline their study of a specific type of perovskite called KBNNO, which may be able to harness many forms of energy. Like all perovskites, KBNNO is a ferroelectric material, filled with tiny electric dipoles analogous to tiny compass needles in a magnet. When ferroelectric materials like KBNNO undergo changes in temperature, their dipoles misalign, which induces an electric current. Electric charge also accumulates according to the direction the dipoles point. Deforming the material causes certain regions to attract or repel charges, again generating a current. Previous researchers have studied KBNNO's photovoltaic and general ferroelectric properties, but they did so at temperatures a couple of hundred degrees below freezing, and they didn't focus on properties related to temperature or pressure. This new study represents the first time anyone has evaluated all of these properties at once above room temperature, Bai said. The experiments showed that while KBNNO is reasonably good at generating electricity from heat and pressure, it isn't quite as good as other perovskites. Perhaps the most promising finding, however, is that the researchers can modify the composition of KBNNO to improve its pyroelectric and piezoelectric properties. "It is possible that all these properties can be tuned to a maximum point," said Bai, who with his colleagues is already exploring such an improved material by preparing KBNNO with sodium. Within the next year, Bai said, he hopes to build a prototype multi-energy-harvesting device. The fabrication process is straightforward, so commercialization could come in just a few years once researchers identify the best material. "This will push the development of the Internet of Things and smart cities, where power-consuming sensors and devices can be energy sustainable," he added. This kind of material would likely supplement the batteries in electrical devices, improving energy efficiency and reducing how often they need to be recharged. One day, Bai said, multi-energy harvesting may mean electrical devices don’t need to be plugged into the mains electricity supply at all. Batteries for small devices may even become obsolete. This story is adapted from material from the American Institute of Physics, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.


A device similar in shape and size to a flat screen TV could soon be employed in remotely charging any other device within its line of sight, according to new research. The technology required to build this device already exists in terms of accessibility and creating this wireless power transfer machine is only a matter of taking the time to designing it. The research, published Oct. 23, 2016 in the journal American Institute of Physics, notes that wireless power transfer (WPT) has been a popular subject of research. The new study employed a beamed WPT scheme created employing a dynamically reconfigurable aperture transferring power to receiving devices within the Fresnel region. "The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost," noted the study abstract. The research found that the approximate design formulas are derived from the Gaussian optics approximation, and give relatively stable estimates of the system performance, in terms of both efficiency and coverage. Wireless charging systems have already been created, they are generally used to charge power speakers, phones or tablets. However, these technologies require special platforms and need to be placed in the vicinity of the charger. "Whether it's headphones, cell phones, watches, or even your mouse and keyboard, a major irritation for consumers is the hassle of being tethered to cords to recharge batteries. And of course, they always run dry at the worst possible moment. Our proposed system would be able to automatically and continuously charge any device anywhere within a room, making dead batteries a thing of the past," noted David Smith, professor and chair of the Department of Electrical and Computer Engineering at Duke. The reason why gadgets can only receive power when placed close to the charging station is that the system through which this type of charging works is a resonant magnetic near-field employed to the energy transfer. Magnetic fields are believed to be lacking dangers when it comes to human exposure, which is why they are generally used in power transfer out of convenience. The magnetic near-field, however, cannot support power transfer over bigger distances because the coupling between the source and the gadget receiving power drops when exceeding a given distance. This new research proposes a WPT system which would permit charging wireless on a much larger distance than the usual ones already available on the market, due to a more permissive frequency. The challenge of developing the technology which would allow this type of WPT lies in finding low cost, very powerful materials. These would also have to be an efficient and reliable electromagnetic energy source. However, according to the authors of the study, these challenges will soon be addressed and the team will find the most optimal solution. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.


Mildred S. Dresselhaus, a celebrated and beloved MIT professor whose research helped unlock the mysteries of carbon, the most fundamental of organic elements — earning her the nickname “queen of carbon science” — died Monday at age 86. Dresselhaus, a solid-state physicist who was Institute Professor Emerita of Physics and Electrical Engineering and Computer Science, was also nationally known for her work to develop wider opportunities for women in science and engineering. She died at Mount Auburn Hospital in Cambridge, Massachusetts, following a brief period of poor health. “Yesterday, we lost a giant — an exceptionally creative scientist and engineer who was also a delightful human being,” MIT President L. Rafael Reif wrote in an email today sharing the news of Dresselhaus’s death with the MIT community. “Among her many ‘firsts,’ in 1968, Millie became the first woman at MIT to attain the rank of full, tenured professor. She was the first solo recipient of a Kavli Prize and the first woman to win the National Medal of Science in Engineering.” “Millie was also, to my great good fortune, the first to reveal to me the wonderful spirit of MIT,” Reif added. “In fact, her down-to-earth demeanor was a major reason I decided to join this community. … Like dozens of young faculty and hundreds of MIT students over the years, I was lucky to count Millie as my mentor.” A winner of both the Presidential Medal of Freedom (from President Barack Obama, in 2014) and the National Medal of Science (from President George H.W. Bush, in 1990), Dresselhaus was a member of the MIT faculty for 50 years. Beyond campus, she held a variety of posts that placed her at the pinnacle of the nation’s scientific enterprise. Dresselhaus’s research made fundamental discoveries in the electronic structure of semi-metals. She studied various aspects of graphite and authored a comprehensive book on fullerenes, also known as “buckyballs.” She was particularly well known for her work on nanomaterials and other nanostructural systems based on layered materials, like graphene, and more recently beyond graphene, like transition metal dichalcogenides and phosphorene. Her work on using quantum structures to improve thermoelectric energy conversion reignited this research field. As notable as her research accomplishments was Dresselhaus’s longstanding commitment to promoting gender equity in science and engineering, and her dedication to mentorship and teaching. In 1971, Dresselhaus and a colleague organized the first Women’s Forum at MIT as a seminar exploring the roles of women in science and engineering. She received a Carnegie Foundation grant in 1973 to support her efforts to encourage women to enter traditionally male dominated fields of science and engineering. For a number of years, she led an MIT seminar in engineering for first-year students; designed to build the confidence of female students, it always drew a large audience of both men and women. Just two weeks ago, General Electric released a 60-second video featuring Dresselhaus that imagined a world where female scientists like her were celebrities, to both celebrate her achievements as well as to encourage more women to pursue careers in science, technology, engineering, and mathematics. Dresselhaus co-authored eight books and about 1,700 papers, and supervised more than 60 doctoral students. “Millie’s dedication to research was unparalleled, and her enthusiasm was infectious,” says Anantha Chandrakasan, the Vannevar Bush Professor of Electrical Engineering and Computer Science and head of MIT’s Department of Electrical Engineering and Computer Science (EECS). “For the past half-century, students, faculty and researchers at MIT and around the world have been inspired by her caring advice. I was very fortunate to have had her as a mentor, and as an active member of the EECS faculty. She made such a huge impact on MIT, and her contributions will long be remembered.” Born on Nov. 11, 1930, in Brooklyn and raised in the Bronx, Mildred Spiewak Dresselhaus attended Hunter College, receiving her bachelor’s degree in 1951 and then winning a Fulbright Fellowship to study at Cambridge University. While she had planned to become a teacher, Rosalyn Yalow — who would go on to win the 1977 Nobel Prize in physiology or medicine — encouraged Dresselhaus to pursue physics instead. She ultimately earned her MA from Radcliffe College in 1953 and her PhD in 1958 from the University of Chicago, where she studied under Nobel laureate Enrico Fermi. From 1958 to 1960, Dresselhaus was a National Science Foundation Postdoctoral Fellow at Cornell University. Dresselhaus began her 57-year association with MIT in the Solid State Division of Lincoln Laboratory in 1960. In 1967, she joined what was then called the Department of Electrical Engineering as the Abby Rockefeller Mauze Visiting Professor, a chair reserved for appointments of distinguished female scholars. She became a permanent member of the electrical engineering faculty in 1968, and added an appointment in the Department of Physics in 1983. In 1985, Dresselhaus became the first female Institute Professor, an honor bestowed by the MIT faculty and administration for distinguished accomplishments in scholarship, education, service, and leadership. There are usually no more than 12 active Institute Professors on the MIT faculty. In addition to her teaching and research, Dresselhaus served in numerous scientific leadership roles, including as the director of the Office of Science at the U.S. Department of Energy; as president of the American Physical Society and of the American Association for the Advancement of Science; as chair of the governing board of the American Institute of Physics; as co-chair of the recent Decadal Study of Condensed Matter and Materials Physics; and as treasurer of the National Academy of Sciences. Aside from her Medal of Freedom — the highest award bestowed by the U.S. government upon American civilians — and her Medal of Science, given to the nation’s top scientists, Dresselhaus’s extensive honors included the IEEE Medal of Honor for “leadership and contributions across many fields of science and engineering”; the Enrico Fermi Award from the U.S. Department of Energy for her leadership in condensed matter physics, in energy and science policy, in service to the scientific community, and in mentoring women in the sciences; and the prestigious Kavli Prize for her pioneering contributions to the study of phonons, electron-phonon interactions, and thermal transport in nanostructures. She was also an elected member of the National Academy of Sciences and the National Academy of Engineering. Always an active and vibrant presence at MIT, Dresselhaus remained a notable influence on campus until her death. She continued to publish scientific papers on topics such as the development of 2-D sheets of thin electronic materials, and played a role in shaping MIT.nano, a new 200,000-square-foot center for nanoscience and nanotechnology scheduled to open in 2018. In 2015, Dresselhaus delivered the keynote address at “Rising Stars in EECS,” a three-day workshop for female graduate students and postdocs who are considering careers in academic research. Her remarks, on the importance of persistence, described her experience studying with Enrico Fermi. Three-quarters of the students in that program, she said, failed to pass rigorous exam requirements. “It was what you did that counted,” Dresselhaus told the aspiring scientists, “and that followed me through life.” Dresselhaus is survived by her husband, Gene, and by her four children and their families: Marianne and her husband, Geoffrey, of Palo Alto, California; Carl, of Arlington, Massachusetts; Paul and his wife, Maria, of Louisville, Colorado; and Eliot and his wife, Françoise, of France. She is also survived by her five grandchildren — Elizabeth, Clara, Shoshi, Leora, and Simon — and by her many students, whom she cared for very deeply. Gifts in her memory may be made to MIT.nano.

Loading American Institute of Physics collaborators
Loading American Institute of Physics collaborators