Time filter

Source Type

Salt Lake City, UT, United States

Amedica Corporation | Date: 2014-09-29

Apparatus, methods, and systems relating to spinal implants and instruments for installing such implants. In some embodiments, a spinal implant may comprise an opening configured to receive an installation rod for installing the spinal implant within an intervertebral space of a patient. The opening may be positioned within a wall of the spinal implant, and may comprise a peripheral edge defined by the wall of the spinal implant. An installation rod may be provided that may be configured to be positioned within the opening of the spinal implant, and may comprise an engagement section configured to engage a portion of the spinal implant defining the opening at a location spaced apart from the peripheral edge such that the highest forces applied to the spinal implant in coupling the spinal implant with the installation rod during installation are not applied to the portion of the opening defined by the peripheral edge.

Amedica Corporation | Date: 2015-07-16

Biomedical implants comprising portions made of disparate materials, such as intervertebral implants and related methods and instruments. In some embodiments, the implant may comprise a base portion comprising a first material and a secondary fastener portion comprising a second material having distinct physical properties relative to the first material. The secondary portion may wholly define a front end wall surface of the implant, and the base portion and the secondary portion may collectively define at least one of an upper surface and a lower surface of the implant.

Amedica Corporation | Date: 2014-02-07

Embodiments of apparatus, systems, and methods relating to spinal implants. In some embodiments, the spinal implant may comprise a first sidewall, a second sidewall opposite from the first sidewall, a pair of opposed frictional surfaces each comprising a plurality of raised structures, a first end wall joining the pair of opposed sidewall surfaces, and a second end wall joining the first sidewall and the second sidewall. The second end wall may comprise a recess formed by a first wall portion and a second wall portion arranged at an angle to one another to form a fish-tailed structure configured to be engaged with an inserter instrument. The interface between the recess and the inserter instrument may be configured to at least substantially eliminate any point or line contacts between the inserter instrument and the spinal implant during a flip maneuver of the spinal implant within an intervertebral space of a patient.

Amedica Corporation | Date: 2014-10-15

Methods for forming an insert, such as a threaded or threadable insert, within a cavity in an implant, such as a spinal spacer. In some implementations, an implant body comprising a first, non-threadable, may be provided. A cavity may be formed in the implant body, after which an insert may be positioned within the cavity. Preferably, the insert comprises a second material distinct from the first material, wherein the second material has physical properties distinct from the first material. A female thread may then be formed within the insert, which may allow for threading an otherwise unthreadable, or relatively unthreadable, material.

Methods for improving the antibacterial characteristics of a biomedical implant. In some implementations, the method may comprise providing a biomedical implant material block. The biomedical implant material block may comprise a silicon nitride ceramic material. The surface chemistry of the biomedical implant material block may be altered to improve the antibacterial characteristics of the biomedical implant material block. In some implementations, the surface chemistry may be altered by firing the biomedical implant material block in a nitrogen-rich environment or otherwise increasing the nitrogen content in the transitional oxide layer of at least a portion of the biomedical implant material block. The surface of the biomedical implant material block may also, or alternatively, be roughened to improve antibacterial characteristics of the implant.

Discover hidden collaborations