Salt Lake City, UT, United States
Salt Lake City, UT, United States

Time filter

Source Type

Patent
Amedica Corporation | Date: 2014-02-07

Embodiments of apparatus, systems, and methods relating to spinal implants. In some embodiments, the spinal implant may comprise a first sidewall, a second sidewall opposite from the first sidewall, a pair of opposed frictional surfaces each comprising a plurality of raised structures, a first end wall joining the pair of opposed sidewall surfaces, and a second end wall joining the first sidewall and the second sidewall. The second end wall may comprise a recess formed by a first wall portion and a second wall portion arranged at an angle to one another to form a fish-tailed structure configured to be engaged with an inserter instrument. The interface between the recess and the inserter instrument may be configured to at least substantially eliminate any point or line contacts between the inserter instrument and the spinal implant during a flip maneuver of the spinal implant within an intervertebral space of a patient.


Patent
Amedica Corporation | Date: 2014-09-29

Apparatus, methods, and systems relating to spinal implants and instruments for installing such implants. In some embodiments, a spinal implant may comprise an opening configured to receive an installation rod for installing the spinal implant within an intervertebral space of a patient. The opening may be positioned within a wall of the spinal implant, and may comprise a peripheral edge defined by the wall of the spinal implant. An installation rod may be provided that may be configured to be positioned within the opening of the spinal implant, and may comprise an engagement section configured to engage a portion of the spinal implant defining the opening at a location spaced apart from the peripheral edge such that the highest forces applied to the spinal implant in coupling the spinal implant with the installation rod during installation are not applied to the portion of the opening defined by the peripheral edge.


Patent
Amedica Corporation | Date: 2016-03-14

Spinal fixation system connectors comprising spring cage elements. In some embodiments, an engagement member, such as a bone screw, may be configured to be coupled with and received within a connector body. A spring cage structure may also be configured to be coupled with the connector body. The spring cage structure may comprise a spring configured to be positioned in a relaxed configuration and a flexed configuration, such that the spring defines an opening having a first size in the relaxed configuration and a second, larger size in the flexed configuration to allow the opening to receive and engage a head of the engagement member within the connector body.


Patent
Amedica Corporation | Date: 2016-05-23

Embodiments of biomedical implants and other devices made up of a composite of materials comprising metal and/or metal alloys and ceramics. In some embodiments, a modular biomedical implant may comprise a first metallic member comprising at least one of a metal and a metal alloy, a second metallic member comprising at least one of a metal and a metal alloy, and a ceramic sleeve positioned in between the first metallic member and the second metallic member so as to at least substantially prevent contact between the first metallic member and the second metallic member.


Patent
Amedica Corporation | Date: 2014-03-17

Ceramic orthopedic implants may have one or more dense inner layers and one or more porous outer layers. Methods for manufacturing the implants may include one or more stages during which the dense inner layer(s) are partially compressed. At least one porous outer layer may include coating particles that are present at a surface of one or more inner layer(s) while pressure is applied to attach the coating particles to the inner layer(s) and to further compress one or more of the inner layer(s). Various layers may be formed until an implant, or other device, is formed having the desired density gradient and/or other properties, as disclosed herein.


Embodiments of apparatus, systems, and methods relating to biomedical implants and other devices made up of unique and improved alumina-zirconia ceramic materials. In an example of a method according to an implementation of the invention, a slurry is prepared, compressed, and fired to obtain a fired ceramic piece comprising at least aluminum oxide, zirconium dioxide, yttrium oxide, cerium oxide, strontium oxide, magnesium oxide, titanium dioxide, and calcium oxide. Some embodiments and implementations may comprise selected concentrations of one or more such compounds to yield certain preferred results.


Ceramic materials comprising charge-compensating dopants and related methods. In some embodiments, the materials may comprise dopants such as Y_(2)O_(3), Gd_(2)O_(3), Nb_(2)O_(5), and/or Ta_(2)O_(5). Some embodiments may comprise a molar concentration of Y_(2)O_(3 )and/or Gd_(2)O_(3 )that is at least approximately equal to the molar concentration of Nb_(2)O_(5 )and/or Ta_(2)O_(5). Certain embodiments and implementations may comprise particular, unique concentrations or concentration ranges of various compounds/materials in order to improve performance for use of such ceramic materials as biomedical implants.


Patent
Amedica Corporation | Date: 2014-03-17

Ceramic implants, such as spinal implants, may comprise a dense shell and a porous core. In some implementations, methods for manufacturing the implants may comprise one or more stages at which the core material abuts the shell so as to form a mechanical attachment therewith while both the core and the shell are in a green state. The core and the shell may be fired together, and the resultant implant may, in some embodiments, comprise a unitary piece of ceramic material. Some embodiments may comprise silicon nitride ceramic materials.


Patent
Amedica Corporation | Date: 2015-07-16

Biomedical implants comprising portions made of disparate materials, such as intervertebral implants and related methods and instruments. In some embodiments, the implant may comprise a base portion comprising a first material and a secondary fastener portion comprising a second material having distinct physical properties relative to the first material. The secondary portion may wholly define a front end wall surface of the implant, and the base portion and the secondary portion may collectively define at least one of an upper surface and a lower surface of the implant.


Patent
Amedica Corporation | Date: 2016-08-05

Methods for improving the antibacterial, osteoconductive, and/or osteoinductive characteristics of silicon nitride and/or other ceramic materials, particularly to make them more suitable for use in manufacturing biomedical implants. In some embodiments and implementations, the surface chemistry and/or morphology of a silicon nitride bioceramic may be modulated significantly through thermal, chemical, and/or mechanical treatments to achieve such advantageous results. A portion of the resulting material, such as a glaze or upper layer of the material, may be separately produced as a powder or frit, for example, and used in manufacturing biomedical implants and/or other products, such as by using such portion of the material as a coating or filler. In other embodiments the surface material may be separately manufactured as a silicon oxynitride monolith.

Loading Amedica Corporation collaborators
Loading Amedica Corporation collaborators