Entity

Time filter

Source Type

Toronto, Canada

Amec Foster Wheeler plc is a British multinational consultancy, engineering and project management company headquartered in London, United Kingdom. It is focused on the oil and gas, minerals and metals, clean energy, environment and infrastructure markets and has offices in over 50 countries worldwide. Roughly a third of its turnover comes from Europe, half from North America and 12% from the rest of the world.Amec Foster Wheeler is listed on the London Stock Exchange and is a constituent of the FTSE 250 Index. Wikipedia.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-15-2014 | Award Amount: 12.99M | Year: 2015

STEPWISE is a solid sorption technology for CO2 capture from fuel gases in combination with water-gas shift and acid gas removal. The main objectives of the proposed STEPWISE project is to scale up the technology for the CO2 capture from Blast Furnace Gases (BFG) with three overall demonstration goals in comparison to state-of-the-art amine-based technologies: Higher carbon capture rate i.e. lower carbon intensity, 85% reduction Higher energy efficiency i.e. lower energy consumption for capture (SPECCA ), 60% reduction Better economy i.e. lower cost of CO2 avoided, 25% reduction The STEPWISE project will achieve this by the construction and the operation of a pilot test installation at a blast furnace site enabling the technology to reach TRL6 as the next step in the research, development and demonstration trajectory. Hence further reducing the risk of scaling up the technology. The STEPWISE project has the potential to decrease CO2 emissions worldwide by 2.1Gt/yr based on current emission levels. The conservative estimate is that by 2050, a potential cost saving of 750 times the research costs for this project will be realized each year every year, with a much larger potential. The overall objective is to secure jobs in the highly competitive European steel industry, a sector employing 360 thousand skilled people with an annual turnover of 170 billion.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NFRP-01-2014 | Award Amount: 13.89M | Year: 2015

The overall aim of the SOTERIA project is to improve the understanding of the ageing phenomena occurring in reactor pressure vessel (RPV) steels and in the internal steels (internals) in order to provide crucial information to regulators and operators to ensure safe long-term operation (LTO) of existing European nuclear power plants (NPPs). SOTERIA has set up a collaborative research consortium which gathers the main European research centres and industrial partners who will combine advanced modelling tools with the exploitation of experimental data to focus on four technical objectives: i) to carry out experiments aiming to explore flux and fluence effects on RPV and internals in pressurised water reactors, ii) to assess the residual lifetime of RPV taking into account metallurgical heterogeneities, iii) to assess the effect of the chemical and radiation environment on cracking in internals and iv) to develop modelling tools and provide a single platform integrating developed modelling tools and experimental data for reassessment of structural components during NPPs lifetime. Building on industry-specific key questions and material, SOTERIA will fill current gaps in safety assessment related to ageing phenomena, by providing a set of modelling tools directly applicable in an industrial environment. Guidelines for better use of modelling, material testing reactors and surveillance data will also be an output of paramount importance. Another important parallel objective is the education of the nuclear engineering and research community of SOTERIA results to improve and harmonise knowledge about NPPs ageing and thereby ensure a high impact of project results. The knowledge and tools generated in SOTERIA will contribute to improving EU nuclear safety policy, to increasing the leadership of the EU in safety related equipment and information and to contribute to improved NPP safety world-wide. The SOTERIA proposal received the NUGENIA label on 10 August 2014.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-CSA | Phase: Fission-2013-2.2.1 | Award Amount: 10.36M | Year: 2013

Preparing ESNII for HORIZON 2020 The aim of this cross-cutting project is to develop a broad strategic approach to advanced fission systems in Europe in support of the European Sustainable Industrial Initiative (ESNII) within the SET-Plan. The project aims to prepare ESNII structuration and deployment strategy, to ensure efficient European coordinated research on Reactor Safety for the next generation of nuclear installations, linked with SNETP SRA priorities. The ESNII\ project aims to define strategic orientations for the Horizon 2020 period, with a vision to 2050. To achieve the objectives of ESNII, the project will coordinate and support the preparatory phase of legal, administrative, financial and governance structuration, and ensure the review of the different advanced reactor solutions. The project will involve private and public stakeholders, including industry, research and academic communities, with opened door to international collaboration, involving TSO.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NFRP-01-2014 | Award Amount: 6.14M | Year: 2015

INCEFA-PLUS delivers new experimental data and new guidelines for assessment of environmental fatigue damage to ensure safe operation of European nuclear power plants. Austenitic stainless steels will be tested for the effects of mean strain, hold time and material roughness on fatigue endurance. Testing will be in nuclear Light Water Reactor environments. The three experimental parameters were selected in the framework of an in-kind project during which the current state of the art for this technical area was developed. The data obtained will be collected and standardised in an online fatigue database with the objective of organising a CEN workshop on this aspect. The gaps in available fatigue data lead to uncertainty in current assessments. The gaps, will be targeted so that fatigue assessment procedures can address behaviour under conditions closer to normal plant operation than is currently possible. Increased safety can thus be assured. INCEFA-PLUS also develops and disseminates a modified procedure for estimating environmental fatigue degradation. This will take better account of the effects of mean strain, hold time and surface finish. This will enable better management of nuclear components, making possible the long term operation (LTO) of NPPs under safer conditions. INCEFA-PLUS is relevant to the NFRP1-2014 programme because: Present guidance originates from NRC. In Europe various national programmes aim to develop counter proposals allowing greater operational efficiency with at least comparable safety assurance. INCEFA-PLUS brings these programmes together through which a strong EU response to the NRC methodology will be obtained with improved safety assurance through increased lifetime assessment reliability. INCEFA-PLUS improves comparability of data from EU programmes because partner laboratories will do some tests on a common material under common conditions. Reduced assessment uncertainty will enable easier maintenance of safety


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Fellowship | Award Amount: 777.38K | Year: 2015

Ageing infrastructure and the move towards more advanced materials raises new, currently unsolved, inspection challenges. Fatigue and creep damage are two of the most common modes of failure in engineering structures, yet both are extremely difficult to detect in early stages of development. Similarly, there is a growing need to inspect bonded joints, be it adhesively bonded composites for major engineering components, or diffusion bonded metal components such as super-plastically deformed fan blades. This lack of inspection technique is artificially limiting the lifetimes and use of engineering components and was recently highlighted as a key requirement on the 5-10 year horizon by a group of industrial end-users of Non-Destructive Evaluation (NDE). They specifically highlighted the need for ``techniques identified for crack precursors, difficult and new engineering materials. This fellowship will enable the applicant to develop practical and deployable nonlinear ultrasonic inspection techniques for monitoring of each of these damage scenarios, making use of recent developments in ultrasonic equipment, specifically highly flexible phased array systems and novel experimental techniques. The use of phased arrays, which are specifically tailored for NDE, is key. They allow multiple measurements without sensor repositioning, eliminating the high coupling and alignment variability that can readily mask the extremely small nonlinear signals. Even more importantly, the approach in this fellowship will enable localisation of nonlinearity within a specimen. This is currently not possible with any degree of reliability and represents a key barrier to wider adoption of this exciting inspection approach.

Discover hidden collaborations