Entity

Time filter

Source Type

Toulouse, France

Lastrucci C.,CNRS Institute of Pharmacology and Structural Biology | Lastrucci C.,University Paul Sabatier | Baillif V.,Ambiotis SAS | Behar A.,CNRS Institute of Pharmacology and Structural Biology | And 7 more authors.
FASEB Journal | Year: 2015

Models of microbe-elicited peritonitis have been invaluable to identify mechanisms underlying inflammation resolution, but whether resolution mechanisms differ from an inflammatory agent to another has not been determined. Thus, we analyzed the cellular and molecular components of the resolution phase of nonmicrobe-induced inflammation. In thioglycollate (TG)-induced peritonitis, resolution started at 12 h (Tmax) and displayed a 22 h resolution interval (Ri). During resolution, lipoxin A4, resolvin (Rv) D1 and RvD2, protectin D1(PD1), and maresin 1 (MaR1) were transiently produced while RvD5 was continually generated. In addition, docosahexaenoic acid (DHA)-derived mediators were produced to a higher extent than in microbial peritonitis. We also investigated leukocyte infiltration and clearance in peritoneal tissues surrounding the inflammatory site. In the omentum, resolution parameters, neutrophil apoptosis, and efferocytosis were similar to those of the peritoneal cavity. However, we noticed long-term persistence of M2-polarized macrophages and B-lymphocytes in the omentum after TG administration, whereas zymosan injection caused M1/M2-macrophage and T-lymphocyte persistence regardless of the magnitude of the inflammatory response. Our study indicates that some aspects of resolution are shaped in a stimulus-specific manner, and it ultimately argues that the tissues surrounding the inflammatory site must also be considered to address the inflammatory response globally. © FASEB. Source


Gobbetti T.,French Institute of Health and Medical Research | Gobbetti T.,French National Center for Scientific Research | Gobbetti T.,Toulouse 1 University Capitole | Gobbetti T.,Queen Mary, University of London | And 13 more authors.
PLoS ONE | Year: 2013

Polyunsaturated fatty acid (PUFA) metabolites are bioactive autoacoids that play an important role in the pathogenesis of a vast number of pathologies, including gut diseases. The induction and the resolution of inflammation depend on PUFA metabolic pathways that are favored. Therefore, understanding the profile of n-6 (eicosanoids)/n-3 (docosanoids) PUFA-derived metabolites appear to be as important as gene or protein array approaches, to uncover the molecules potentially implicated in inflammatory diseases. Using high sensitivity liquid chromatography tandem mass spectrometry, we characterized the tissue profile of PUFA metabolites in an experimental model of murine intestinal ischemia reperfusion. We identified temporal and quantitative differences in PUFA metabolite production, which correlated with inflammatory damage. Analysis revealed that early ischemia induces both pro-inflammatory and anti-inflammatory eicosanoid production. Primarily, LOX- (5/15/12/8-HETE, LTB4, LxA4) and CYP- (5, 6-EET) metabolites were produced upon ischemia, but also PGE3, and PDx. This suggests that different lipids simultaneously play a role in the induction and counterbalance of ischemic inflammatory response from its onset. COX-derived metabolites were more present from 2 to 5 hours after reperfusion, fitting with the concomitant inflammatory peaks. All metabolites were decreased 48 hours post-reperfusion except for to the pro-resolving RvE precursor 18-HEPE and the PPAR-γαμμα agonist, 15d-PGJ2. Data obtained through the pharmacological blockade of transient receptor potential vanilloid-4, which can be activated by 5, 6-EET, revealed that the endogenous activation of this receptor modulates post-ischemic intestinal inflammation. Altogether, these results demonstrate that different lipid pathways are involved in intestinal ischemia-reperfusion processes. Some metabolites, which expression is severely changed upon intestinal ischemia-reperfusion could provide novel targets and may facilitate the development of new pharmacological treatments. © 2013 Gobbetti et al. Source


Gobbetti T.,French Institute of Health and Medical Research | Gobbetti T.,French National Center for Scientific Research | Gobbetti T.,University Paul Sabatier | Gobbetti T.,Queen Mary, University of London | And 23 more authors.
British Journal of Pharmacology | Year: 2015

BACKGROUND AND PURPOSE: Long-term intake of dietary fatty acids is known to predispose to chronic inflammation, but their effects on acute intestinal ischaemia/reperfusion (I/R) injury is unknown. The aim of this study was to determine the consequences of a diet rich in n-3 or n-6 polyunsaturated fatty acids (PUFA) on intestinal I/R-induced damage. EXPERIMENTAL APPROACH: Mice were fed three different isocaloric diets: a balanced diet used as a control and two different PUFA-enriched diets, providing either high levels of n-3 or of n-6 PUFA. Intestinal injury was evaluated after intestinal I/R. PUFA metabolites were quantitated in intestinal tissues by LC-MS/MS. KEY RESULTS: In control diet-fed mice, intestinal I/R caused inflammation and increased COX and lipoxygenase-derived metabolites compared with sham-operated animals. Lipoxin A4 (LxA4) was significantly and selectively increased after ischaemia. Animals fed a high n-3 diet did not display a different inflammatory profile following intestinal I/R compared with control diet-fed animals. In contrast, intestinal inflammation was decreased in the I/R group fed with high n-6 diet and level of LxA4 was increased post-ischaemia compared with control diet-fed mice. Blockade of the LxA4 receptor (Fpr2), prevented the anti-inflammatory effects associated with the n-6 rich diet. CONCLUSIONS AND IMPLICATIONS: This study indicates that high levels of dietary n-6, but not n-3, PUFAs provides significant protection against intestinal I/R-induced damage and demonstrates that the endogenous production of LxA4 can be influenced by diet. © 2014 The British Pharmacological Society. Source


Cenac N.,French Institute of Health and Medical Research | Cenac N.,French National Center for Scientific Research | Cenac N.,University Paul Sabatier | Bautzova T.,French Institute of Health and Medical Research | And 27 more authors.
Gastroenterology | Year: 2015

Background & Aims In mice, activation of the transient receptor potential cation channels (TRP) TRPV1, TRPV4, and TRPA1 causes visceral hypersensitivity. These receptors and their agonists might be involved in development of irritable bowel syndrome (IBS). We investigated whether polyunsaturated fatty acid (PUFA) metabolites, which activate TRPs, are present in colon tissues from patients with IBS and act as endogenous agonists to induce hypersensitivity. Methods We analyzed colon biopsy samples from 40 patients with IBS (IBS biopsies) and 11 healthy individuals undergoing colorectal cancer screening (controls), collected during colonoscopy at the University of Bologna, Italy. Levels of the PUFA metabolites that activate TRPV1 (12-hydroperoxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4), TRPV4 (5,6-epoxyeicosatrienoic acid [EET] and 8,9-EET), and TRPA1 (PGA1, 8-iso-prostaglandin A2, and 15-deoxy-Δ-prostaglandin J2) were measured in biopsies and their supernatants using liquid chromatography and tandem mass spectrometry; we also measured levels of the PUFA metabolites prostaglandin E2 (PGE2) and resolvins. C57Bl6 mice were given intrathecal injections of small interfering RNAs to reduce levels of TRPV4, or control small interfering RNAs, along with colonic injections of biopsy supernatants; visceral hypersensitivity was measured based on response to colorectal distension. Mouse sensory neurons were cultured and incubated with biopsy supernatants and lipids extracted from biopsies or colons of mice. Immunohistochemistry was used to detect TRPV4 in human dorsal root ganglia samples (from the National Disease Research Interchange). Results Levels of the TRPV4 agonist 5,6-EET, but not levels of TRPV1 or TRPA1 agonists, were increased in IBS biopsies compared with controls; increases correlated with pain and bloating scores. Supernatants from IBS biopsies, but not from controls, induced visceral hypersensitivity in mice. Small interfering RNA knockdown of TRPV4 in mouse primary afferent neurons inhibited the hypersensitivity caused by supernatants from IBS biopsies. Levels of 5,6-EET and 15-HETE were increased in colons of mice with, but not without, visceral hypersensitivity. PUFA metabolites extracted from IBS biopsies or colons of mice with visceral hypersensitivity activated mouse sensory neurons in vitro, by activating TRPV4. Mouse sensory neurons exposed to supernatants from IBS biopsies produced 5,6-EET via a mechanism that involved the proteinase-activated receptor-2 and cytochrome epoxygenase. In human dorsal root ganglia, TPV4 was expressed by 35% of neurons. Conclusions Colon tissues from patients with IBS have increased levels of specific PUFA metabolites. These stimulate sensory neurons from mice and generate visceral hypersensitivity via activation of TRPV4. © 2015 by the AGA Institute. Source


Le Faouder P.,French Institute of Health and Medical Research | Le Faouder P.,University Paul Sabatier | Le Faouder P.,French National Center for Scientific Research | Le Faouder P.,Toulouse 1 University Capitole | And 26 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2013

Lipid autacoids derived from n-3/n-6 polyunsaturated fatty acids (PUFA) are some of the earliest signals triggered by an inflammatory reaction. They are acting also as essential regulators of numerous biological processes in physiological conditions. With regards to their importance, a robust and rapid procedure to quantify a large variety of PUFA metabolites, applicable to diverse biological components needed to be formulated. We have developed a simple methodology using liquid chromatography-tandem mass spectrometry allowing quantification of low-level of PUFA metabolites including bioactive mediators, inactive products and pathway biomarkers. Solid phase extraction was used for samples preparation with an extraction yield of 80% ranging from 65% to 98%. The method was optimized to obtain a rapid (8.5. min) and accurate separation of 26 molecules, with a very high sensitivity of detection and analysis (0.6-155. pg). When applied to biological samples, the method enabled characterization of eicosanoids and docosanoids production in epithelial cells or foam macrophages stimulated with LPS, in biological fluids and tissues from mouse models of peritonitis or infectious colitis. Our results demonstrate that this new method can be used in cultured cells, in fluids and in colonic tissues to quantify pro-inflammatory and pro-resolving PUFA metabolites mediators. © 2013 Elsevier B.V. Source

Discover hidden collaborations