Entity

Time filter

Source Type


Leinemann L.,University of Gottingen | Kleinschmit J.,Abteilung Waldgenressourcen | Fussi B.,ASP Teisendorf | Hosius B.,Am Institute For Forstgenetik Und Forstpflanzenzuchtung | And 6 more authors.
Plant Systematics and Evolution | Year: 2014

Sloe (Prunus spinosa L.) is a shrub native to Europe. In Germany, 50–80 % of all planted sloe is imported. Little is known about the genetic diversity patterns within and between German sloe populations. Thus, a debate arose how to avoid risks for nature and landscape by planting potentially maladapted material. The main objectives of our study are to analyse the genetic differentiation pattern of sloe populations in Germany, to identify geographic/genetic structures and to evaluate their potential for tracing reproductive material. 17 natural populations from Germany and 1 from Italy and Hungary were investigated by Amplified Fragment Length Polymorphisms (AFLP) and PCR–RFLP techniques. The AMOVA analyses based on AFLPs for all populations and for the German populations only result in equally high differentiation values of ΦPT = 15 % of molecular variance between populations. The analysis of cpDNA PCR–RFLPs resulted in 24 haplotypes with 30 % showing genetic variation between populations. Overall values of genetic variability over all loci and populations are: Na = 0.832, Ne = 1.114 and He = 0.072. Mantel tests for AFLPs and cpDNA haplotypes reveal no association between geographic and genetic distances between populations as a result of a lack of differentiation between German populations and those from southern and southeastern Europe. Weak geographic/genetic patterns were observed on a large scale. However, these concern the German populations only. Our results indicate that vegetative regeneration in combination with founder effects may influence the level of differentiation between populations. Populations with a large amount of vegetative propagation are more differentiated from other populations than those populations which exhibit less vegetative regeneration. The assignment of reproductive material (i.e. plant material) to potential source populations resulted in high values of correct allocations. Hence, such methods can be applied to trace reproductive material of unknown origin. © 2014, Springer-Verlag Wien. Source


Leinemann L.,University of Gottingen | Steiner W.,Nordwestdeutsche Forstliche Versuchsanstalt | Hosius B.,Am Institute For Forstgenetik Und Forstpflanzenzuchtung | Kuchma O.,Am Institute For Forstgenetik Und Forstpflanzenzuchtung | And 6 more authors.
Plant Systematics and Evolution | Year: 2013

Corylus avellana L. (hazel) is a long-lived, monoecious and wind-pollinated shrub species, widespread all over Europe. In Germany, hazel is intensively traded and planted, and thus is of central interest from a nature conservancy point of view. To assess the within- and between-population differentiation of hazel, 20 natural populations (18 from Germany, one from Italy and one from Hungary) were investigated genetically. Seven isozyme systems comprising 11 gene loci were analysed in up to 100 samples (average 92.6) per population, amplified fragment length polymorphisms (AFLP) were analysed in up to 50 samples (average 47.4) and nine cpDNA-SSR markers were assessed in 20 samples per population. Results for overall isozyme variability with Na 2.46 alleles per locus, allelic diversity (Ne) 1.39, expected heterozygosity He 21 % and 79 % polymorphic loci were in accordance with the findings of previous studies. The respective values for AFLPs were lower, but both marker systems revealed the same level of about 3.5 % differentiation between populations. For cpSSR only the Italian sample showed within-population variation and the two haplotypes were completely differentiated from all other populations expressing a unique genetic structure with one single haplotype. Among the three marker systems AFLPs showed the best ability to differentiate between populations. While only one isozyme locus revealed significant differentiation, 41 AFLP loci showed highly significant differentiation between all populations, but 26 loci when only German populations were considered. Consequently geographic differentiation analyses focused mainly on molecular markers. Mantel tests showed significant correlations between genetic and geographic distance, but in the unweighted pair-group method with arithmetic mean analyses, adjacent populations did not always form clusters. While chloroplast markers were able to clearly distinguish only the Hungarian population, the nuclear markers revealed clear spatial genetic structures. The correlations between geographic and genetic distance was high for AFLPs. The correlograms illustrate this effect for all populations as well as for the German populations. © 2012 The Author(s). Source

Discover hidden collaborations