Time filter

Source Type

Albi A.,Center for Mind Brain science | Minati L.,Center for Mind Brain science | Marizzoni M.,Lenitem Laboratory Of Epidemiologyneuroimaging And Telemedicine Irccs San Giovanni Of Dio Fbfbrescia Italy | Bosch B.,Alzheimers Disease and Other Cognitive Disorders Unit | And 25 more authors.
Human Brain Mapping | Year: 2016

Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. © 2016 Wiley Periodicals, Inc.


Jekel K.,University of Heidelberg | Damian M.,University of Heidelberg | Wattmo C.,Lund University | Hausner L.,University of Heidelberg | And 21 more authors.
Alzheimer's Research and Therapy | Year: 2015

Introduction: There is a growing body of evidence that subtle deficits in instrumental activities of daily living (IADL) may be present in mild cognitive impairment (MCI). However, it is not clear if there are IADL domains that are consistently affected across patients with MCI. In this systematic review, therefore, we aimed to summarize research results regarding the performance of MCI patients in specific IADL (sub)domains compared with persons who are cognitively normal and/or patients with dementia. Methods: The databases PsycINFO, PubMed and Web of Science were searched for relevant literature in December 2013. Publications from 1999 onward were considered for inclusion. Altogether, 497 articles were retrieved. Reference lists of selected articles were searched for potentially relevant articles. After screening the abstracts of these 497 articles, 37 articles were included in this review. Results: In 35 studies, IADL deficits (such as problems with medication intake, telephone use, keeping appointments, finding things at home and using everyday technology) were documented in patients with MCI. Financial capacity in patients with MCI was affected in the majority of studies. Effect sizes for group differences between patients with MCI and healthy controls were predominantly moderate to large. Performance-based instruments showed slight advantages (in terms of effect sizes) in detecting group differences in IADL functioning between patients with MCI, patients with Alzheimer's disease and healthy controls. Conclusion: IADL requiring higher neuropsychological functioning seem to be most severely affected in patients with MCI. A reliable identification of such deficits is necessary, as patients with MCI with IADL deficits seem to have a higher risk of converting to dementia than patients with MCI without IADL deficits. The use of assessment tools specifically designed and validated for patients with MCI is therefore strongly recommended. Furthermore, the development of performance-based assessment instruments should be intensified, as they allow a valid and reliable assessment of subtle IADL deficits in MCI, even if a proxy is not available. Another important point to consider when designing new scales is the inclusion of technology-associated IADL. Novel instruments for clinical practice should be time-efficient and easy to administer. © 2015 Jekel et al.; licensee BioMed Central.

Loading Alzheimers Disease and Other Cognitive Disorders Unit collaborators
Loading Alzheimers Disease and Other Cognitive Disorders Unit collaborators