Entity

Time filter

Source Type

Watertown, WI, United States

Dogan S.,Mississippi State University | Mason M.C.,Mississippi State University | Mason M.C.,Alcorn State University | Govindaraju A.,Mississippi State University | And 5 more authors.
Journal of Reproduction and Development | Year: 2013

Male fertility, the ability of sperm to fertilize and activate the egg and support early embryogenesis, is vital for mammalian reproduction. Despite producing adequate numbers of sperm with normal motility and morphology, some males suffer from low fertility whose molecular mechanisms are not known. The objective was to determine apoptosis in sperm from high and low fertility bulls and its relationship with male fertility. DNA damage, phosphatidylserine (PS) translocation, and expression of proand anti-apoptotic proteins (BAX and BCL-2) in the sperm were determined using TUNEL, Annexin V, and immunoblotting approaches, respectively. Amounts of apoptotic spermatozoa were 2.86 (± 1.31) and 3.00 (± 0.96) in high and low fertility bulls, respectively (P=0.548), and were not correlated with fertility. There was a negative correlation between early necrotic spermatozoa and viable spermatozoa (r = -0.99, P<0.0001). Fertility scores were correlated with live spermatozoa detected by eosin-nigrosin test and necrotic spermatozoa determined via fow cytometry (r = -0.49, P<0.006 and r = -0.266, P<0.0113, respectively). BAX level was higher in low fertile group than high fertile group; however, this difference was not statistically significant due to the variations of bull samples (Bull 1-3 vs. Bull 4-5) in low fertile group (P<0.283). BCL-2 was not detectable in any of the sperm samples. The results shed light onto molecular and cellular underpinnings of male fertility. © 2013 by the Society for Reproduction and Development. Source


Govindaraju A.,Mississippi State University | Dogan S.,Mississippi State University | Rodriguez-Osorio N.,University of Antioquia | Grant K.,Mississippi State University | And 2 more authors.
Cell and Tissue Research | Year: 2012

Fertilization of an egg by a spermatozoon sets the stage for mammalian development. Viable sperm are a prerequisite for successful fertilization and beyond. Spermatozoa have a unique cell structure where haploid genomic DNA is located in a tiny cytoplasmic space in the head, mitochondria in the midpiece and then the tail, all enclosed by several layers of membrane. Proteins in sperm play vital roles in motility, capacitation, fertilization, egg activation and embryo development. Molecular defects in these proteins are associated with low fertility or in some cases, infertility. This review will first summarize genesis, molecular anatomy and physiology of spermatozoa, fertilization, embryogenesis and then those proteins playing important roles in various aspects of sperm physiology. © Springer-Verlag 2012. Source


Uzbas F.,Helmholtz Center Munich | May I.D.,Mississippi State University | Parisi A.M.,Mississippi State University | Thompson S.K.,Mississippi State University | And 3 more authors.
Stem Cell Reviews and Reports | Year: 2015

Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine. © 2014, Springer Science+Business Media New York. Source


Trademark
Alta Genetics Inc. | Date: 2009-11-03

Bull semen. Live cattle embryos; live cattle. Wholesale stores featuring cattle embryos, and bull semen; wholesale stores featuring live cattle. Laboratory research in the field of reproductive technologies. Artificial insemination and in-vitro fertilization of animals; breeding of cattle embryos; bull semen extraction.


Feugang J.M.,Mississippi State University | Rodriguez-Osorio N.,University of Antioquia | Kaya A.,Alta Genetics Incorporated | Wang H.,Mississippi State University | And 4 more authors.
Reproductive BioMedicine Online | Year: 2010

Spermatozoa deliver more than the paternal genome into the oocyte; they also carry remnant messenger RNA from spermatogenesis. The RNA profiles of spermatozoa from high-fertility and a low-fertility Holstein bulls were analysed using Affymetrix bovine genechips. A total of 415 transcripts out of approximately 24,000 were differentially detected in spermatozoa collected from both bulls (fold change ≥2.0; P < 0.01). These transcripts were associated with different cellular functions and biological processes. Spermatozoa from high-fertility bulls contained higher concentrations of transcripts for membrane and extracellular space protein locations, while spermatozoa from the low-fertility bulls were deficient of transcripts for transcriptional and translational factors. Quantitative real-time PCR was used on three low-fertility and four high-fertility bulls to validate the microarray data. Two highly represented transcripts in the microarray analysis (protamine 1 and casein beta 2) were validated, as well as a third transcript (thrombospondin receptor CD36 molecule) that showed a lower concentration in low-fertility bulls. This study presents the global analysis of spermatozoa originating from bulls with opposite fertility. These results provide some specific transcripts in spermatozoa that could be associated with bull fertility. © 2010, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations