Time filter

Source Type

Cambridge, MA, United States

Akinc A.,Alnylam Pharmaceuticals
Cold Spring Harbor perspectives in biology | Year: 2013

In this article, we briefly review the endocytic pathways used by cells, pointing out their defining characteristics and highlighting physical limitations that may direct the internalization of nanoparticles to a subset of these pathways. A more detailed description of these pathways is presented in the literature. We then focus on the endocytosis of nanomedicines and present how various nanomaterial parameters impact these endocytic processes. This topic is an area of active research, motivated by the recognition that an improved understanding of how nanomaterials interact at the molecular, cellular, and whole-organism level will lead to the design of better nanomedicines in the future. Next, we briefly review some of the important nanomedicines already on the market or in clinical development that serve to exemplify how endocytosis can be exploited for medical benefit. Finally, we present some key unanswered questions and remaining challenges to be addressed by the field.

The invention relates to lipid formulated double-stranded ribonucleic acid (dsRNA) targeting a transthyretin (TTR) gene, and methods of using the dsRNA to inhibit expression of TTR.

Alnylam Pharmaceuticals | Date: 2015-04-02

The present invention relates to a cationic lipid having one or more biodegradable groups located in a lipidic moiety (e.g., a hydrophobic chain) of the cationic lipid. These cationic lipids may be incorporated into a lipid particle for delivering an active agent, such as a nucleic acid. The invention also relates to lipid particles comprising a neutral lipid, a lipid capable of reducing aggregation, a cationic lipid of the present invention, and optionally, a sterol. The lipid particle may further include a therapeutic agent such as a nucleic acid.

Described herein are methods for identifying nucleic acid sequences that modulate the function of a cell, the expression of a gene in a cell, or the biological activity of a target polypeptide in a cell. The methods involve the use of double stranded RNA expression libraries, double stranded RNA molecules, and post-transcriptional gene silencing techniques.

Alnylam Pharmaceuticals and The Board Of Regents Of The University Of Texas System | Date: 2015-07-08

The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a SCAP gene (Human SCAP gene), comprising an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of a SCAP gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by Human SCAP expression and the expression of a SCAP gene using the pharmaceutical composition; and methods for inhibiting the expression of a SCAP gene in a cell.

Discover hidden collaborations