Time filter

Source Type

Saint Petersburg, Russia

Babenko A.Y.,Institute of Endocrinology | Grineva E.N.,Institute of Endocrinology | Savitskaja D.A.,Institute of Endocrinology | Kravchuk E.N.,Institute of Endocrinology | And 2 more authors.
BioMed Research International | Year: 2014

Human cardiac β1-AR perform a crucial role in mediating the cardiostimulating effects of norepinephrine. Gly389Arg and Ser49Gly polymorphisms of β1-adrenoreceptors (β1-AR) can influence the cardiovascular prognosis. However, the possible effect of Gly389Arg and Ser49Gly polymorphisms on heart function in thyrotoxicosis has not been studied. We investigated the possible link between Gly389Arg and Ser49Gly polymorphisms and echocardiography parameters in 165 normotensive patients with a thyrotoxicosis without any cardiovascular disorders. Echo-CG was performed according to standard protocol before and during the thyreostatic treatment. Our data demonstrate that both Gly389Arg and Ser49Gly polymorphisms have very moderate influence on the risk of left ventricular hypertrophy and atrial fibrillation with no statistically significant effects on cardiac function and the development of cardiovascular complications. © 2014 A. Y. Babenko et al. Source

Zlotina A.,Saint Petersburg State University | Nikulina T.,Almazov Federal Medical Research Center | Yany N.,Almazov Federal Medical Research Center | Moiseeva O.,Almazov Federal Medical Research Center | And 3 more authors.
Molecular Cytogenetics | Year: 2016

Background: Ring chromosome 18 [r(18)] syndrome represents a relatively rare condition with a complex clinical picture including multiple congenital dysmorphia and varying degrees of mental retardation. The condition is cytogenetically characterized by a complete or mosaic form of ring chromosome 18, with ring formation being usually accompanied by the partial loss of both chromosomal arms. Here we observed a 20-year-old male patient who along with the features typical for r(18) carriers additionally manifested a severe congenital subaortic stenosis. To define the genetic basis of such a compound phenotype, standard cytogenetic and high-resolution molecular-cytogenetic analysis of the patient was performed. Case presentation: Standard chromosome analysis of cultured lymphocytes confirmed 46, XY, r(18) karyotype. Array-based comparative genomic hybridization (array-CGH) allowed to define precisely the breakpoints of 18p and 18q terminal deletions, thus identifying the hemizygosity extent, and to reveal an additional duplication adjoining the breakpoint of the 18p deletion. Apart from the terminal imbalances, we found an interstitial microdeletion of 442 kb in size (18q12.1) that encompassed DTNA gene encoding α-dystrobrevin, a member of dystrophin-associated glycoprotein complex. While limited data on the role of DTNA missense mutations in pathogenesis of human cardiac abnormalities exist, a microdeletion corresponding to whole DTNA sequence and not involving other genes has not been earlier described. Conclusions: A detailed molecular-cytogenetic characterization of the patient with multiple congenital abnormalities enabled to unravel a combination of genetic defects, namely, a ring chromosome 18 with terminal imbalances and DTNA whole-gene deletion. We suggest that such combination could contribute to the complex phenotype. The findings obtained allow to extend the knowledge of the role of DTNA haploinsufficiency in congenital heart malformation, though further comprehensive functional studies are required. © 2016 Zlotina et al. Source

Malashicheva A.,Saint Petersburg State University | Kostina D.,Almazov Federal Medical Research Center | Kostina A.,Saint Petersburg State University | Irtyuga O.,Saint Petersburg State University of Information Technologies, Mechanics and Optics | And 8 more authors.
International Journal of Vascular Medicine | Year: 2016

Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, VWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis. © 2016 Anna Malashicheva et al. Source

Murahovschi V.,German Institute of Human Nutrition | Murahovschi V.,Charite - Medical University of Berlin | Pivovarova O.,German Institute of Human Nutrition | Pivovarova O.,Charite - Medical University of Berlin | And 30 more authors.
Diabetes | Year: 2015

WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the secreted extracellular matrix-associated proteins of the CCN family and a target gene of the Wingless-type (WNT) signaling pathway. Growing evidence links the WNT signaling pathway to the regulation of adipogenesis and low-grade inflammation in obesity. We aimed to validate WISP1 as a novel adipokine. Human adipocyte differentiation was associated with increased WISP1 expression and secretion. Stimulation of human macrophages with WISP1 led to a proinflammatory response. Circulating WISP1 and WISP1 subcutaneous adipose tissue expression were regulated by weight changes in humans and mice. WISP1 expression in visceral and subcutaneous fat tissue was associated with markers of insulin resistance and inflammation in glucose-tolerant subjects. In patients with nonalcoholic fatty liver disease, we found no correlation among disease activity score, liver fat content, and WISP1 expression. Insulin regulated WISP1 expression in adipocytes in vitro but had no acute effect on WISP1 gene expression in subcutaneous fat tissue in overweight subjects who had undergone hyperinsulinemic clamp experiments. The data suggest that WISP1 may play a role in linking obesity to inflammation and insulin resistance and could be a novel therapeutic target for obesity. © 2015 by the American Diabetes Association. Source

Malashicheva A.,Saint Petersburg State University | Bogdanova M.,Saint Petersburg State University | Zabirnyk A.,Almazov Federal Medical Research Center | Smolina N.,Karolinska Institutet | And 8 more authors.
Molecular Genetics and Metabolism | Year: 2015

Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies - G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations. © 2015 Elsevier Inc. Source

Discover hidden collaborations