ALMA JAO

Santiago, Chile
Santiago, Chile
SEARCH FILTERS
Time filter
Source Type

Lestrade J.-F.,Paris Observatory | Matthews B.C.,National Research Council Canada | Matthews B.C.,University of Victoria | Sibthorpe B.,Astronomy Technology Center | And 20 more authors.
Astronomy and Astrophysics | Year: 2012

Debris disks have been found primarily around intermediate and solar mass stars (spectral types A-K) but rarely around low mass M-type stars. We have spatially resolved a debris disk around the remarkable M3-type star GJ 581 hosting multiple planets using deep PACS images at 70, 100 and 160 μm as part of the DEBRIS Program on the Herschel Space Observatory. This is the second spatially resolved debris disk found around an M-type star, after the one surrounding the young star AU Mic (12 Myr). However, GJ 581 is much older (2-8 Gyr), and is X-ray quiet in the ROSAT data. We fit an axisymmetric model of the disk to the three PACS images and found that the best fit model is for a disk extending radially from 25 ± 12 AU to more than 60 AU. Such a cold disk is reminiscent of the Kuiper belt but it surrounds a low mass star (0.3 Mθ) and its fractional dust luminosity Ldust/L * of ∼ 10-4 is much higher. The inclination limits of the disk found in our analysis make the masses of the planets small enough to ensure the long-term stability of the system according to some dynamical simulations. The disk is collisionally dominated down to submicron-sized grains and the dust cannot be expelled from the system by radiation or wind pressures because of the low luminosity and low X-ray luminosity of GJ 581. We suggest that the correlation between low-mass planets and debris disks recently found for G-type stars also applies to M-type stars. Finally, the known planets, of low masses and orbiting within 0.3 AU from the star, cannot dynamically perturb the disk over the age of the star, suggesting that an additional planet exists at larger distance that is stirring the disk to replenish the dust. © ESO, 2012.


Matthews B.C.,National Research Council Canada | Matthews B.C.,University of Victoria | Sibthorpe B.,Astronomy Technology Center | Kennedy G.,University of Cambridge | And 35 more authors.
Astronomy and Astrophysics | Year: 2010

We present results from the earliest observations of DEBRIS, a Herschel key programme to conduct a volume- and flux-limited survey for debris discs in A-type through M-type stars. PACS images (from chop/nod or scan-mode observations) at 100 and 160 μm are presented toward two A-type stars and one F-type star: β Leo, β UMa and η Corvi. All three stars are known disc hosts. Herschel spatially resolves the dust emission around all three stars (marginally, in the case of β UMa), providing new information about discs as close as 11 pc with sizes comparable to that of the Solar System. We have combined these data with existing flux density measurements of the discs to refine the SEDs and derive estimates of the fractional luminosities, temperatures and radii of the discs. © 2010 ESO.


Greiner J.,Max Planck Institute for Extraterrestrial Physics | Kruhler T.,Copenhagen University | Nardini M.,University of Milan Bicocca | Filgas R.,Max Planck Institute for Extraterrestrial Physics | And 28 more authors.
Astronomy and Astrophysics | Year: 2013

Aims. With the afterglow of GRB 100621A being the brightest detected so far in X-rays, and superb GROND coverage in the optical/near-infrared during the first few hours, an observational verification of basic fireball predictions seemed possible. Methods. In order to constrain the broad-band spectral energy distribution of the afterglow of GRB 100621A, dedicated observations were performed in the optical/near-infrared with the 7-channel Gamma-Ray Burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPG/ESO telescope, in the sub-millimeter band with the large bolometer array LABOCA at APEX, and at radio frequencies with ATCA. Utilizing also Swift X-ray observations, we attempt an interpretation of the observational data within the fireball scenario. Results. The afterglow of GRB 100621A shows a very complex temporal and spectral evolution. We identify three different emission components, the most spectacular one causing a sudden intensity jump about one hour after the prompt emission. The spectrum of this component is much steeper than the canonical afterglow. We interpret this component using a two-shell collision prescription after the first shell has been decelerated by the circumburst medium. We use the fireball scenario to derive constraints on the microphysical parameters of the first shell. Long-term energy injection into a narrow jet seems to provide an adequate description. Another noteworthy result is the large (AV = 3.6 mag) line-of-sight host extinction of the afterglow in an otherwise extremely blue host galaxy. Conclusions. Some GRB afterglows have shown complex features, and that of GRB 100621A is another good example. Yet, detailed observational campaigns of the brightest afterglows promise to deepen our understanding of the formation of afterglows and the subsequent interaction with the circumburst medium. © ESO, 2013.


Vandenbussche B.,Catholic University of Leuven | Sibthorpe B.,Astronomy Technology Center | Acke B.,Catholic University of Leuven | Pantin E.,University Paris Diderot | And 44 more authors.
Astronomy and Astrophysics | Year: 2010

We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star β Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 μm. The surface brightness profiles between 70 and 160 μm show no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 μm originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250-500 μm filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index (β = 0.34) indicates that the grain size distribution in the inner disk (<200 AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure. © 2010 ESO.


Vandenbussche B.,Catholic University of Leuven | Sibthorpe B.,Astronomy Technology Center | Acke B.,Catholic University of Leuven | Pantin E.,University Paris Diderot | And 44 more authors.
Astronomy and Astrophysics | Year: 2010

We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star β Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 μm. The surface brightness profiles between 70 and 160 μm show no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 μm originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250-500 μm filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index (β = 0.34) indicates that the grain size distribution in the inner disk (<200 AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure. © 2010 ESO.


Melin J.-B.,CEA Saclay Nuclear Research Center | Aghanim N.,CNRS Paris Institute of Astrophysics | Bartelmann M.,University of Heidelberg | Bartlett J.G.,Paris West University Nanterre La Défense | And 23 more authors.
Astronomy and Astrophysics | Year: 2012

We evaluate the construction methodology of an all-sky catalogue of galaxy clusters detected through the Sunyaev-Zel'dovich (SZ) effect. We perform an extensive comparison of twelve algorithms applied to the same detailed simulations of the millimeter and submillimeter sky based on a Planck-like case. We present the results of this "SZ Challenge" in terms of catalogue completeness, purity, astrometric and photometric reconstruction. Our results provide a comparison of a representative sample of SZ detection algorithms and highlight important issues in their application. In our study case, we show that the exact expected number of clusters remains uncertain (about a thousand cluster candidates at |b| > 20 deg with 90% purity) and that it depends on the SZ model and on the detailed sky simulations, and on algorithmic implementation of the detection methods. We also estimate the astrometric precision of the cluster candidates which is found of the order of ~2 arcmin on average, and the photometric uncertainty of about 30%, depending on flux. © ESO, 2012.


Sibthorpe B.,Astronomy Technology Center | Vandenbussche B.,Catholic University of Leuven | Greaves J.S.,University of St. Andrews | Pantin E.,University Paris Diderot | And 41 more authors.
Astronomy and Astrophysics | Year: 2010

We present five band imaging of the Vega debris disc obtained using the Herschel Space Observatory. These data span a wavelength range of 70-500 μm with full-width half-maximum angular resolutions of 5.6-36.9". The disc is well resolved in all bands, with the ring structure visible at 70 and 160 μm. Radial profiles of the disc surface brightness are produced, and a disc radius of 11′ (∼85 AU) is determined. The disc is seen to have a smooth structure thoughout the entire wavelength range, suggesting that the disc is in a steady state, rather than being an ephemeral structure caused by the recent collision of two large planetesimals. © 2010 ESO.


Fedele D.,Johns Hopkins University | Pascucci I.,Johns Hopkins University | Pascucci I.,US Space Telescope Science Institute | Brittain S.,Clemson University | And 7 more authors.
Astrophysical Journal | Year: 2011

We present high-resolution (R ∼ 100,000) L-band spectroscopy of 11 Herbig AeBe stars with circumstellar disks. The observations were obtained with the VLT/CRIRES to detect hot water and hydroxyl radical emission lines previously detected in disks around T Tauri stars. OH emission lines are detected toward four disks. The OH 2Π3/2 P4.5 (1+,1-) doublet is spectrally resolved as well as the velocity profile of each component of the doublet. Its characteristic double-peak profile demonstrates that the gas is in Keplerian rotation and points to an emitting region extending out to ∼15-30AU. The OH emission correlates with disk geometry as it is mostly detected toward flaring disks. None of the Herbig stars analyzed here show evidence of hot water vapor at a sensitivity similar to that of the OH lines. The non-detection of hot water vapor emission indicates that the atmospheres of disks around Herbig AeBe stars are depleted of water molecules. Assuming LTE and optically thin emission we derive a lower limit to the OH/H2O column density ratio >1-25 in contrast to T Tauri disks for which the column density ratio is 0.3-0.4. © 2011. The American Astronomical Society. All rights reserved.


Hunt L.K.,National institute for astrophysics | Garcia-Burillo S.,Observatorio Astronomico Nacional | Casasola V.,National institute for astrophysics | Caselli P.,Max Planck Institute for Extraterrestrial Physics | And 8 more authors.
Astronomy and Astrophysics | Year: 2015

Tracing molecular hydrogen content with carbon monoxide in low-metallicity galaxies has been exceedingly difficult. Here we present a new effort, with IRAM 30-m observations of 12CO(1-0) of a sample of 8 dwarf galaxies having oxygen abundances ranging from 12 + log(O/H) ~ 7.7 to 8.4. CO emission is detected in all galaxies, including the most metal-poor galaxy of our sample (0.1 Z⊙); to our knowledge this is the largest number of 12CO(1-0) detections ever reported for galaxies with 12 + log(O/H) ≲ 8 (0.2 Z⊙) outside the Local Group. We calculate stellar masses, Mstar, and star-formation rates (SFRs), and analyze our results in conjunction with galaxy samples from the literature. Extending previous results for a correlation of the molecular gas depletion time, τdep, with Mstar and specific SFR (sSFR), we find a variation in τdep of a factor of 200 or more (from ≲ 50 Myr to ~10 Gyr) over a spread of ~103 in sSFR and Mstar. We exploit the variation of τdep to constrain the CO-to-H2 mass conversion factor αCO at low metallicity, and assuming a power-law variation find αCO∝Z/Z⊙ -2, similar to results based on dust continuum measurements compared with gas mass. By including Hi measurements, we show that the fraction of total gas mass relative to the baryonic mass is higher in galaxies that are metal poor, of low mass, and with high sSFR. Finally, comparisons of the data with star-formation models of the molecular gas phases show that the models are generally quite successful, but at metallicities Z/Z⊙ ≲ 0.2, there are some discrepancies. © 2015 ESO.

Loading ALMA JAO collaborators
Loading ALMA JAO collaborators