Entity

Time filter

Source Type


Lundqvist M.,University College Dublin | Lundqvist M.,Lund University | Stigler J.,University College Dublin | Cedervall T.,Lund University | And 5 more authors.
ACS Nano | Year: 2011

The importance of the protein corona formed around nanoparticles upon entering a biological fluid has recently been highlighted. This corona is, when sufficiently long-lived, thought to govern the particles' biological fate. However, even this long-lived "hard" corona evolves and re-equilibrates as particles pass from one biological fluid to another, and may be an important feature for long-term fate. Here we show the evolution of the protein corona as a result of transfer of nanoparticles from one biological fluid (plasma) into another (cytosolic fluid), a simple illustrative model for the uptake of nanoparticles into cells. While no direct comparison can be made to what would happen in, for example, the uptake pathway, the results confirm that significant evolution of the corona occurs in the second biological solution, but that the final corona contains a "fingerprint" of its history. This could be evolved to map the transport pathways utilized by nanoparticles, and eventually to predict nanoparticle fate and behavior. © 2011 American Chemical Society. Source


Patent
Alligator Bioscience | Date: 2015-02-12

The invention provides an isolated polypeptide comprising a variant amino acid sequence of SEQ ID NO: 1, or a fusion or derivative of said polypeptide, or a fusion of a said derivative thereof, wherein the polypeptide, fusion or derivative retains a biological activity of wild type IL-IRa. In one embodiment, the isolated polypeptide, fusion or derivative is or comprises a polypeptide variant of amino acid sequence SEQ ID NO: 1 comprising or consisting of substitutions at one or more of the following amino acid mutations of SEQ ID NO: 1: Q29K, P38Y, P38R, L42W, D47N, E52R, H54R, E90Y, Q129L, Q129N, M136N, M136D and Q149K. Also provided are pharmaceutical compositions of the above polypeptide, fusion or derivative, as well as uses of the same for treating a disease or condition capable of being treated by an agent which inhibits the function of IL-1 receptors.


Patent
Alligator Bioscience | Date: 2012-09-05

The present invention relates to antibodies (and fragments, variants, fusions and derivatives thereof) with multivalent binding specificity for CD40, which have a potency for dendritic cell activation which is higher than, or is equal to, the potency for B cell activation and wherein the antibody, antigen-binding fragment, or fusion, variant or derivative thereof has an affinity (KD) for CD40 of less than 110


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 3.76M | Year: 2012

The ITN TIMCC brings together eight expert teams from different disciplines within Immunology, Genetics and Oncology, to provide substantive and methodological training in the analysis of the role of the Tumor Infiltrating Myeloid Cell Compartment (TIMCC) of the innate immune system. Leukocytes recruited to (pre)malignant tissues are mainly myeloid cells. They can either prevent or functionally contribute to cancer development. However, the mechanisms underlying pro- versus anti-tumor programming of neoplastic tissues by these immune cells remain obscure. The ITN TIMCC aims to improve anti-tumor therapy by defining general and tumor type specific molecular and cellular immunological pathways (e.g signal transduction and downstream effector pathways) in tumor development and during therapeutic intervention based on an extensive analysis of the infiltrating myeloid cell compartment in human tumor biopsies using a large variety of techniques and functional analysis of the corresponding models of a variety of human tumors, affecting different organs, in a unique cohort of genetically modified mice treated with different types of anti-tumor therapy. The program will train the appointed researchers in a variety of methodology and technology from genomic technologies and bioinformatics via genetically modified mice to the design and application of therapeutic strategies to understand and manipulate the many interactions of the myeloid cell compartment with developing tumors. By defining underlying molecular and cellular pathways new targets will be identified to be explored by the participating SMEs. The program will deliver young researchers equipped with a broad knowledge in immunology, genetics and oncology and insight in the complexity of translational medicine therefore better prepared to meet new challenges in the field.


Patent
Alligator Bioscience | Date: 2010-11-17

The present invention provides an immunomodulatory agent for use in the local treatment of tumours, wherein the treatment comprises patient-specific optimisation of the dose of the immunomodulatory agent to identify the maximum therapeutic dose that does not induce an increase in the number of local regulatory T cells (Treg cells) in the patient The invention further provides methods for the local treatment of tumours as well as methods for optimising treatments for the same

Discover hidden collaborations