Time filter

Source Type

Ecully, France

Delhanty P.J.D.,Erasmus Medical Center | Huisman M.,Erasmus Medical Center | Baldeon-Rojas L.Y.,Erasmus Medical Center | Van Den Berge I.,Erasmus Medical Center | And 5 more authors.
FASEB Journal

There is clinical evidence that des-acyl ghrelin (DAG) favorably modulates glucose and lipid metabolism, although its mode of action is unknown. A murine model of prediabetes was used to assess possible mechanisms of action for DAG and a newly developed bioactive analog, AZP531. C57BL/6J mice were infused with saline, DAG, or AZP531 continuously for 4 wk, and fed either normal diet (ND) or normal diet for 2 wk followed by a high-fat diet (HFD) for 2 wk. Compared with mice in the ND group, HFD increased body and fat mass, caused glucose intolerance and insulin resistance, had proinflammatory effects in white adipose tissue, and caused lipid accumulation in brown adipose tissue. DAG and AZP531 treatment prevented HFD-induced proinflammatory effects, stimulated expression of mitochondrial function markers in brown adipose tissue, and prevented development of a prediabetic metabolic state. AZP531 also prevented a HFDinduced increase in acyl ghrelin levels. Our data indicate DAG analogs as potential treatment for the prevention of metabolic syndrome. Source

A method for treating obesity and more particularly a method for treating diet-induced obesity in a subject comprising administering to said subject an isolated unacylated ghrelin peptide as set forth in SEQ ID NO: 1, a fragment thereof or a cyclic fragment thereof such as a cyclic unacylated ghrelin fragment. The method being achievable without affecting the food intake of the subject.

Alizé Pharma | Date: 2015-08-05

Disclosed is a conjugate of a protein having substantial L-asparagine aminohydrolase activity and polyethylene glycol. In particular, the polyethylene glycol has a molecular weight less than or equal to about 5000 Da and the protein is an L-asparaginase from

A method and a composition for decreasing ghrelin levels and/or decreasing ghrelin/unacylated ghrelin ratio in a subject, the method comprising administering an effective amount of unacylated ghrelin, a fragment thereof, an analog thereof and/or pharmaceutically acceptable salts thereof to the subject wherein a reduction in ghrelin levels and/or a reduction in ghrelin/unacylated ghrelin ratio is beneficial to the subject. Also, use of ghrelin level and/or ghrelin/unacylated ghrelin ratio as biomarkers for determining a subjects likelihood of responding to and/or benefiting from administration of unacylated ghrelin.

Togliatto G.,University of Turin | Trombetta A.,University of Turin | Dentelli P.,University of Turin | Gallo S.,University of Turin | And 7 more authors.

Reactive oxygen species (ROS) are crucial in longterm diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia- subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 lysate 56 deacetylation and results in reduced EC senescence in vivo. We demonstrate, using small interfering RNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews micro-RNA (miR)-126 expression, resulting in the posttranscriptional regulation of vascular cell adhesion molecule 1 expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR- 126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression, thus emphasizing its potential clinical impact in avoiding limb loss in PAD. © 2015 by the American Diabetes Association. Source

Discover hidden collaborations