Time filter

Source Type

Aligarh, India

Aligarh Muslim University is a public university, funded by the central government of India is among the oldest central universities in India. It was established by Syed Ahmad Khan as Mohammedan Anglo-Oriental College. The Mohammedan Anglo-Oriental College became Aligarh Muslim University in 1920. The main campus of AMU is located in the city of Aligarh. Spread over 467.6 hectares in the city of Aligarh, AMU offers more than 300 courses in the traditional and modern branches of education. The University has consistently ranked among the best educational institutions in India. According to Times Higher Education, Asia Ranking 2014, AMU ranks 3rd among Universities in India. The university is open to all irrespective of caste, creed, religion or gender. Wikipedia.

Siddiqui Z.N.,Aligarh Muslim University
Tetrahedron Letters

A facile, green synthetic route to new benzopyrano [2,3-b] pyridines in excellent yield via Friedlander condensation has been developed by the reaction of 2-amino-3-formylchromone 1a-b and cyclic active methylene compounds 2a-e in the presence of Zn(l-proline) 2 as an efficient, stable, and inexpensive Lewis acid catalyst in water. The present methodology offers several advantages such as shorter reaction time, mild reaction conditions, simple operational procedure, recyclable catalyst, and safe to the environment. © 2012 Elsevier Ltd. All rights reserved. Source

Ansari S.A.,Aligarh Muslim University | Husain Q.,Jazan University
Biotechnology Advances

Several new types of carriers and technologies have been implemented in the recent past to improve traditional enzyme immobilization which aimed to enhance enzyme loading, activity and stability to decrease the enzyme biocatalyst cost in industrial biotechnology. These include cross-linked enzyme aggregates, microwave-assisted immobilization, click chemistry technology, mesoporous supports and most recently nanoparticle-based immobilization of enzymes. The union of the specific physical, chemical, optical and electrical properties of nanoparticles with the specific recognition or catalytic properties of biomolecules has led to their appearance in myriad novel biotechnological applications. They have been applied time and again for immobilization of industrially important enzymes with improved characteristics. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by experimental protocols based on immobilization on planar 2-D surfaces. Enzymes immobilized on nanoparticles showed a broader working pH and temperature range and higher thermal stability than the native enzymes. Compared with the conventional immobilization methods, nanoparticle based immobilization served three important features; (i) nano-enzyme particles are easy to synthesize in high solid content without using surfactants and toxic reagents, (ii) homogeneous and well defined core-shell nanoparticles with a thick enzyme shell can be obtained, and (iii) particle size can be conveniently tailored within utility limits. In addition, with the growing attention paid to cascade enzymatic reaction and in vitro synthetic biology, it is possible that co-immobilization of multi-enzymes could be achieved on these nanoparticles. © 2011 Elsevier Inc. Source

Chauhan A.,Aligarh Muslim University
International journal of nanomedicine

Nanomaterials are considered to be the pre-eminent component of the rapidly advancing field of nanotechnology. However, developments in the biologically inspired synthesis of nanoparticles are still in their infancy and consequently attracting the attention of material scientists throughout the world. Keeping in mind the fact that microorganism-assisted synthesis of nanoparticles is a safe and economically viable prospect, in the current study we report Candida albicans-mediated biological synthesis of gold nanoparticles. Transmission electron microscopy, atomic force microscopy, and various spectrophotometric analyses were performed to characterize the gold nanoparticles. The morphology of the synthesized gold particles depended on the abundance of C. albicans cytosolic extract. Transmission electron microscopy, nanophox particle analysis, and atomic force microscopy revealed the size of spherical gold nanoparticles to be in the range of 20-40 nm and nonspherical gold particles were found to be 60-80 nm. We also evaluated the potential of biogenic gold nanoparticles to probe liver cancer cells by conjugating them with liver cancer cell surface-specific antibodies. The antibody-conjugated gold particles were found to bind specifically to the surface antigens of the cancer cells. The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells. Source

A chance discovery of the tumoricidal action of a human milk fraction led to the characterization of the active component as oleic acid complex of the α-lactalbumin, which was given the acronym HAMLET. We report in this study that the oleic acid complex of bovine α-lactalbumin (BAMLET) is hemolytic to human erythrocytes as well as to those derived from some other mammals. Indirect immunofluorescence analysis suggested binding of BAMLET to erythrocytes prior to induction of hemolysis. Free OA was hemolytic albeit at higher concentrations, while sodium oleate caused hemolysis at far lower concentrations. Amiloride and BaCl2 offered protection against BAMLET-induced hemolysis suggesting the involvement of a cation leak channel in the process. BAMLET coupled to CNBr-activated Sepharose was not only hemolytic but also tumoricidal to Jurkat and MCF-7 cells in culture. The Sepharose-linked preparation was however not toxic to non-cancerous peritoneal macrophages and primary adipocytes. The tumoricidal action was studied using the MTT-assay while apoptosis induction measured by the annexin V-propidium iodide assay. Repeated incubation of the immobilized BAMLET with erythrocytes depleted oleic acid and decreased the hemolytic activity of the complex. Incubation of MCF-7 and Jurkat cells with OA, soluble or immobilized BAMLET resulted in increase in the uptake of Lyso Tracker Red and Nile red by the cells. The data presented support the contention that oleic acid plays the key role, both in BAMLET-induced hemolysis and tumoricidal action. Source

Husain Q.,Aligarh Muslim University
Critical Reviews in Biotechnology

β Galactosidases have been obtained from microorganisms such as fungi, bacteria and yeasts; plants, animals cells, and from recombinant sources. The enzyme has two main applications; the removal of lactose from milk products for lactose intolerant people and the production of galactosylated products. In order to increase their stability, reusability, and use in continuous reactors, these enzymes have been immobilized on both organic and inorganic support via adsorption, covalent attachment, chemical aggregation, microencapsulation, and entrapment. Free and immobilized preparations of β galactosidases have been exploited in various applications such as industrial, biotechnological, medical, analytical, and in different other applications. β galactosidase is widely used in food industry to improve sweetness, solubility, flavor, and digestibility of dairy products. Immobilized β galactosidases are employed for the continuous hydrolysis of lactose from whey and milk in a number of reactors such as hollow fiber reactors, tapered column reactors, packed bed reactors, fluidized bed reactors etc. © 2010 Informa UK Ltd. Source

Discover hidden collaborations