Alfred Wegener Institute for Polar and Marine Research

www.awi.de/
Bremerhaven, Germany

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research is located in Bremerhaven, Germany, and a member of the Helmholtz Association of German Research Centres. It conducts research in the Arctic, in the Antarctic and in the high and mid latitude oceans. Additional research topics are: North Sea research, marine biological monitoring and technical marine developments. The institute was founded in 1980 and is named after meteorologist, climatologist and geologist Alfred Wegener. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-15-2015 | Award Amount: 52.36M | Year: 2016

In the last decade a significant number of projects and programmes in different domains of environmental monitoring and Earth observation have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and knowledge to stakeholders and policy makers for supporting key economic and societal sectors. The overarching goal of ERA-PLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation to Group on Earth Observation (GEO) and the Copernicus. The expected impact is to strengthen the European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET will reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart cities and Resilient societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domain of Earth Observation.


Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-02-2015 | Award Amount: 78.28M | Year: 2016

Within the European Research Area (ERA), the ERA4CS Consortium is aiming to boost, research for Climate Services (CS), including climate adaptation, mitigation and disaster risk management, allowing regions, cities and key economic sectors to develop opportunities and strengthen Europes leadership. CS are seen by this consortium as driven by user demands to provide knowledge to face impacts of climate variability and change, as well as guidance both to researchers and decisionmakers in policy and business. ERA4CS will focus on the development of a climate information translation layer bridging user communities and climate system sciences. It implies the development of tools, methods, standards and quality control for reliable, qualified and tailored information required by the various field actors for smart decisions. ERA4CS will boost the JPI Climate initiative by mobilizing more countries, within EU Member States and Associated Countries, by involving both the research performing organizations (RPOs) and the research funding organizations (RFOs), the distinct national climate services and the various disciplines of academia, including Social Sciences and Humanities. ERA4CS will launch a joint transnational co-funded call, with over 16 countries and up to 75M, with two complementary topics: (i) a cash topic, supported by 12 RFOs, on co-development for user needs and action-oriented projects; (ii) an in-kind topic, supported by 28 RPOs, on institutional integration of the research components of national CS. Finally, ERA4CS additional activities will initiate a strong partnership between JPI Climate and others key European and international initiatives (as Copernicus, KIC-Climate, JPIs, WMO/GFCS, Future Earth, Belmont Forum) in order to work towards a common vision and a multiyear implementation strategy, including better co-alignment of national programs and activities up to 2020 and beyond.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-07-2015 | Award Amount: 6.65M | Year: 2016

The project MERCES is focused on the restoration of different degraded marine habitats, with the aim of: 1) assessing the potential of different technologies and approaches; 2) quantifying the returns in terms of ecosystems services and their socio-economic impacts; 3) defining the legal-policy and governance frameworks needed to optimize the effectiveness of the different restoration approaches. Specific aims include: a) improving existing, and developing new, restoration actions of degraded marine habitats; b) increasing the adaptation of EU degraded marine habitats to global change; c) enhancing marine ecosystem resilience and services; d) conducting cost-benefit analyses for marine restoration measures; e) creating new industrial targets and opportunities. To achieve these objectives MERCES created a multi-disciplinary consortium with skills in marine ecology, restoration, law, policy and governance, socio-economics, knowledge transfer, dissemination and communication. MERCES will start from the inventory of EU degraded marine habitats (WP1), conduct pilot restoration experiments (WP2, WP3, WP4), assess the effects of restoration on ecosystem services (WP5). The legal, policy and governance outputs will make effective the potential of marine restoration (WP6) and one dedicated WP will assess the socio-economic returns of marine ecosystems restoration (WP7). The transfer of knowledge and the links with the industrial stakeholders will be the focus of WP8. The results of MERCES will be disseminated to the widest audience (WP9). The project will be managed through a dedicated management office (WP10). MERCES will contribute to the Blue Growth by: i) improving the EU scientific knowledge on marine restoration, ii) contributing to EU Marine Directives; iii) implementing the Restoration Agenda, iv) enhancing the industrial capacity in this field, v) increasing the competitiveness of EU in the world market of restoration, and vi) offering new employment opportunities.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-01-2015 | Award Amount: 10.23M | Year: 2016

The objective of SponGES is to develop an integrated ecosystem-based approach to preserve and sustainably use vulnerable sponge ecosystems of the North Atlantic. The SponGES consortium, an international and interdisciplinary collaboration of research institutions, environmental non-governmental and intergovernmental organizations, will focus on one of the most diverse, ecologically and biologically important and vulnerable marine ecosystems of the deep-sea - sponge grounds that to date have received very little research and conservation attention. Our approach will address the scope and challenges of ECs Blue Growth Call by strengthening the knowledge base, improving innovation, predicting changes, and providing decision support tools for management and sustainable use of marine resources. SponGES will fill knowledge gaps on vulnerable sponge ecosystems and provide guidelines for their preservation and sustainable exploitation. North Atlantic deep-sea sponge grounds will be mapped and characterized, and a geographical information system on sponge grounds will be developed to determine drivers of past and present distribution. Diversity, biogeographic and connectivity patterns will be investigated through a genomic approach. Function of sponge ecosystems and the goods and services they provide, e.g. in habitat provision, bentho-pelagic coupling and biogeochemical cycling will be identified and quantified. This project will further unlock the potential of sponge grounds for innovative blue biotechnology namely towards drug discovery and tissue engineering. It will improve predictive capacities by quantifying threats related to fishing, climate change, and local disturbances. SpongeGES outputs will form the basis for modeling and predicting future ecosystem dynamics under environmental changes. SponGES will develop an adaptive ecosystem-based management plan that enables conservation and good governance of these marine resources on regional and international levels.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-09-2016 | Award Amount: 15.49M | Year: 2016

The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fisheries), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.00M | Year: 2016

The SeaDataNet pan-European infrastructure has been developed by NODCs and major research institutes from 34 countries. Over 100 marine data centres are connected and provide discovery and access to data resources for all European researchers. Moreover, SeaDataNet is a key infrastructure driving several portals of the European Marine Observation and Data network (EMODnet), initiated by EU DG-MARE for Marine Knowledge, MSFD, and Blue Growth. SeaDataNet complements the Copernicus Marine Environmental Monitoring Service (CMEMS), coordinated by EU DG-GROW. However, more effective and convenient access is needed to better support European researchers. The standards, tools and services developed must be reviewed and upgraded to keep pace with demand, such as developments of new sensors, and international and IT standards. Also EMODnet and Copernicus pose extra challenges to boost performance and foster INSPIRE compliance. More data from more data providers must be made available, from European and international research projects and observing programmes. SeaDataCloud aims at considerably advancing SeaDataNet services and increasing their usage, adopting cloud and HPC technology for better performance. More users will be engaged and for longer sessions by including advanced services in a Virtual Research Environment. Researchers will be empowered with a collection of services and tools, tailored to their specific needs, supporting marine research and enabling generation of added-value products. Data concern the wide range of in situ observations and remote sensing data. To have access to the latest cloud technology and facilities, SeaDataNet will cooperate with EUDAT, a network of computing infrastructures that develop and operate a common framework for managing scientific data across Europe. SeaDataCloud will improve services to users and data providers, optimise connecting data centres and streams, and interoperate with other European and international networks.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SFS-10b-2015 | Award Amount: 5.41M | Year: 2016

The overarching goal of VIVALDI is to increase the sustainability and competitiveness of the European shellfish industry by improving the understanding of bivalve diseases and by developing innovative solutions and tools for the prevention, control and mitigation of the major pathogens affecting the main European farmed shellfish species: Pacific oyster (Crassostrea gigas), mussels (Mytilus edulis and M. galloprovincialis), European flat oyster (Ostrea edulis), clams (Venerupis philipinarum) and scallops (Pecten maximus ). The project addresses the most harmful pathogens affecting either one or more of these shellfish species: the virus OsHV-1, Vibrio species including V. aestuarianus, V. splendidus, V. harveyi and V. tapetis, as well as the parasite Bonamia ostreae. The project is committed to provide practical solutions based on the most advanced knowledge. VIVALDI will dissect the disease mechanisms associated with pathogen virulence and pathogenesis and host immune responses, develop in vivo and in vitro models, and apply omic approaches that will help the development of diagnostic tools and drugs against pathogen targets, and breeding programmes in a collaborative effort with industrial partners. The proposal will include a global shellfish health approach, recognising that cultured bivalves are often exposed to several pathogens simultaneously, and that disease outbreaks can be due to the combined effect of two or more pathogens. The proposal will also investigate advantages and risks of the used of disease-resistant selected animals in order to improve consumer confidence and safety. VIVALDI will be both multi- and trans-disciplinary. In order to cover both basic and applied levels from molecules to farm, the proposal will integrate partners with a broad range of complementary expertises in pathology and animal health, epidemiology, immunology, molecular biology, genetics, genomics and food safety.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-08-2014 | Award Amount: 20.65M | Year: 2015

The overarching objective of AtlantOS is to achieve a transition from a loosely-coordinated set of existing ocean observing activities to a sustainable, efficient, and fit-for-purpose Integrated Atlantic Ocean Observing System (IAOOS), by defining requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic; and leaving a legacy and strengthened contribution to the Global Ocean Observing System (GOOS) and the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill existing in-situ observing system gaps and will ensure that data are readily accessible and useable. AtlantOS will demonstrate the utility of integrating in-situ and Earth observing satellite based observations towards informing a wide range of sectors using the Copernicus Marine Monitoring Services and the European Marine Observation and Data Network and connect them with similar activities around the Atlantic. AtlantOS will support activities to share, integrate and standardize in-situ observations, reduce the cost by network optimization and deployment of new technologies, and increase the competitiveness of European industries, and particularly of the small and medium enterprises of the marine sector. AtlantOS will promote innovation, documentation and exploitation of innovative observing systems. All AtlantOS work packages will strengthen the trans-Atlantic collaboration, through close interaction with partner institutions from Canada, United States, and the South Atlantic region. AtlantOS will develop a results-oriented dialogue with key stakeholders communities to enable a meaningful exchange between the products and services that IAOOS can deliver and the demands and needs of the stakeholder communities. Finally, AtlantOS will establish a structured dialogue with funding bodies, including the European Commission, USA, Canada and other countries to ensure sustainability and adequate growth of IAOOS.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-10-2016 | Award Amount: 8.72M | Year: 2016

Arctic climate change increases the need of a growing number of stakeholders for trustworthy weather and climate predictions, both within the Arctic and beyond. APPLICATE will address this challenge and develop enhanced predictive capacity by bringing together scientists from academia, research institutions and operational prediction centres, including experts in weather and climate prediction and forecast dissemination. APPLICATE will develop a comprehensive framework for observationally constraining and assessing weather and climate models using advanced metrics and diagnostics. This framework will be used to establish the performance of existing models and measure the progress made within the project. APPLICATE will make significant model improvements, focusing on aspects that are known to play pivotal roles in both weather and climate prediction, namely: the atmospheric boundary layer including clouds; sea ice; snow; atmosphere-sea ice-ocean coupling; and oceanic transports. In addition to model developments, APPLICATE will enhance predictive capacity by contributing to the design of the future Arctic observing system and through improved forecast initialization techniques. The impact of Arctic climate change on the weather and climate of the Northern Hemisphere through atmospheric and oceanic linkages will be determined by a comprehensive set of novel multi-model numerical experiments using both coupled and uncoupled ocean and atmosphere models. APPLICATE will develop strong user-engagement and dissemination activities, including pro-active engagement of end-users and the exploitation of modern methods for communication and dissemination. Knowledge-transfer will also benefit from the direct engagement of operational prediction centres in APPLICATE. The educational component of APPLICATE will be developed and implemented in collaboration with the Association of Early Career Polar Scientists (APECS).


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SC5-05-2016 | Award Amount: 2.59M | Year: 2016

To better constrain the response of Earths climate system to continuing emissions, it is essential to turn to the past. A key advance would be to understand the transition in Earths climate response to changes in orbital forcing during the mid-Pleistocene transition (900 to 1200 thousand years ago) and in particular the role of greenhouse gases. Unravelling such key linkages between the carbon cycle, ice sheets, atmosphere and ocean behaviour is vital for society to better design effective mitigation and adaptation strategies. Only ice cores contain the unique and quantitative information about past climate forcing and atmospheric responses. But the ice providing essential evidence about past mechanisms of climate change more than 1 Ma ago required for our understanding of these changes (termed the Oldest Ice core), has not been found to date. The consortium BEYOND EPICA OLDEST ICE (BE-OI), formed by 14 European institutions, takes on this challenge to prepare the ground for obtaining 1.5 million year old ice from East Antarctica. BE-OI has the objectives to: - support the site selection through creation and synthesis of all necessary information on Antarctic sites through specific geophysical surveys and the use of fast drilling tools to qualify sites and validate the age of their ice; - select and evaluate the optimum drill site for the future Oldest Ice core project and establish a science and management plan for a future drilling; - coordinate the technical and scientific planning to ensure the availability of the technical means to implement suitable drill systems and analytical methodologies for a future ice-core drilling, and of well-trained personnel to operate them successfully; - establish the budget and the financial background for a future deep-drilling campaign; - embed the scientific aims of an Oldest Ice core project within the wider paleoclimate data and modelling communities through international and cross-disciplinary cooperation.

Loading Alfred Wegener Institute for Polar and Marine Research collaborators
Loading Alfred Wegener Institute for Polar and Marine Research collaborators