Entity

Time filter

Source Type


Levin A.,The Alexander Silberman Institute of Life science
Nucleus (Austin, Tex.) | Year: 2010

In the current study we show that the Rev protein of Human Immunodeficiency Virus type 1 (HIV-1) inhibits nuclear import and mediates nuclear export of the HIV-1 integrase (IN) protein, which catalyzes integration of the viral cDNA. Interaction between IN and Rev in virus infected cells, resulting in the formation of a Rev-IN complex, has been previously described by us. Here we show that nuclear import of the IN, is inhibited by early expressed Rev. No nuclear import of IN was observed when Rev-overexpressing cells were infected by wild-type HIV-1. Similarly, no translocation of IN into nuclei was observed in the presence of Rev-derived peptides. On the other hand, massive nuclear import was observed following infection by a ΔRev virus or in the presence of peptides that promote dissociation of the Rev-IN complex. Our results show that IN is only transiently present within the nuclei of infected cells. Treatment of infected cells with leptomycin B caused nuclear retention of the Rev-IN complex. Removal of the leptomycin from these treated cells resulted in nuclear export of both Rev and IN. On the other hand, disruption of the nuclear located Rev-IN complex resulted in export of only the Rev protein indicating Rev-mediated nuclear export of IN. Our results suggest the involvement of Rev in regulating the integration process by limiting the number of integration events per cell despite the presence of numerous copies of viral cDNA. Source


Schweiger R.,The Alexander Silberman Institute of Life science | Linial M.,The Alexander Silberman Institute of Life science | Linial M.,Hebrew University of Jerusalem | Linial N.,The Alexander Silberman Institute of Life science
Bioinformatics | Year: 2011

Motivation: Much of the large-scale molecular data from living cells can be represented in terms of networks. Such networks occupy a central position in cellular systems biology. In the protein-protein interaction (PPI) network, nodes represent proteins and edges represent connections between them, based on experimental evidence. As PPI networks are rich and complex, a mathematical model is sought to capture their properties and shed light on PPI evolution. The mathematical literature contains various generative models of random graphs. It is a major, still largely open question, which of these models (if any) can properly reproduce various biologically interesting networks. Here, we consider this problem where the graph at hand is the PPI network of Saccharomyces cerevisiae. We are trying to distinguishing between a model family which performs a process of copying neighbors, represented by the duplication-divergence (DD) model, and models which do not copy neighbors, with the Barabási-Albert (BA) preferential attachment model as a leading example. Results: The observed property of the network is the distribution of maximal bicliques in the graph. This is a novel criterion to distinguish between models in this area. It is particularly appropriate for this purpose, since it reflects the graph's growth pattern under either model. This test clearly favors the DD model. In particular, for the BA model, the vast majority (92.9%) of the bicliques with both sides ≥4 must be already embedded in the model's seed graph, whereas the corresponding figure for the DD model is only 5.1%. Our results, based on the biclique perspective, conclusively show that a naïve unmodified DD model can capture a key aspect of PPI networks. © The Author(s) 2011. Published by Oxford University Press. Source


Levin A.,The Alexander Silberman Institute of Life science | Hayouka Z.,Hebrew University of Jerusalem | Friedler A.,Hebrew University of Jerusalem | Loyter A.,The Alexander Silberman Institute of Life science
Nucleus | Year: 2010

In the current study we show that the Rev protein of Human Immunodeficiency Virus type 1 (HIV-1) inhibits nuclear import and mediates nuclear export of the HIV-1 integrase (IN) protein, which catalyzes integration of the viral cDNA. Interaction between IN and Rev in virus infected cells, resulting in the formation of a Rev-IN complex, has been previously described by us. Here we show that nuclear import of the IN, is inhibited by early expressed Rev. No nuclear import of IN was observed when Rev-overexpressing cells were infected by wild-type HIV-1. Similarly, no translocation of IN into nuclei was observed in the presence of Rev-derived peptides. On the other hand, massive nuclear import was observed following infection by a Δ Rev virus or in the presence of peptides that promote dissociation of the Rev-IN complex. Our results show that IN is only transiently present within the nuclei of infected cells. Treatment of infected cells with leptomycin B caused nuclear retention of the Rev-IN complex. Removal of the leptomycin from these treated cells resulted in nuclear export of both Rev and IN. On the other hand, disruption of the nuclear located Rev-IN complex resulted in export of only the Rev protein indicating Rev-mediated nuclear export of IN. Our results suggest the involvement of Rev in regulating the integration process by limiting the number of integration events per cell despite the presence of numerous copies of viral cDNA. © 2010 Landes Bioscience. Source


Levin A.,The Alexander Silberman Institute of Life science | Hayouka Z.,Hebrew University of Jerusalem | Friedler A.,Hebrew University of Jerusalem | Loyter A.,The Alexander Silberman Institute of Life science
Nucleus | Year: 2010

Unlike other retroviruses, Human immunodeficiency virus type-1 (HIV-1) can infect terminally differentiated cells, due to the ability of its pre-integration complex (PIC) to translocate via the host nuclear pore complex (NPC). The PIC Nuclear import has been suggested to be mediated by the viral integrase protein (IN), via either the importin α or transportin 3 (TNPO3/transportin-SR2) pathways. We show that in virus-infected cells, IN interacts with both importin α and TNPO3, simultaneously or separately, suggesting a multiple use of nuclear import pathways. Disruption of either the IN-importin α or IN-TNPO3 complexes in virus-infected cells by specific cell-permeable-peptides resulted in inhibition of IN and viral cDNA nuclear import. Here we show that peptides which disrupt either one of these complexes block virus infection, indicating involvement of both pathways in efficient viral replication. Formation of IN-importin α and IN-TNPO3 complexes has also been observed in IN-transfected cultured cells. Using specific peptides, we demonstrate that in transfected cells but not in virus infected cells the importin α pathway overrides that of TNPO3. The IN-importin α and IN-TNPO3 complexes were not observed in virus-infected Rev-expressing cells, indicating the Rev protein's ability to disrupt both complexes. Our work suggests that IN nuclear import requires the involvement of both importin α and TNPO3. The ability to inhibit nuclear import of the IN-DNA complex and consequently, virus infection by peptides that interrupt IN's interaction with either importin α or TNPO3 indicates that for efficient infection, nuclear import of IN should be mediated by both nuclear-import receptors. © 2010 Landes Bioscience. Source


Levin A.,The Alexander Silberman Institute of Life science | Hayouka Z.,Hebrew University of Jerusalem | Friedler A.,Hebrew University of Jerusalem | Loyter A.,The Alexander Silberman Institute of Life science
AIDS Research and Therapy | Year: 2010

A correlation between increase in the integration of Human Immunodeficiency virus-1 (HIV-1) cDNA and cell death was previously established. Here we show that combination of peptides that stimulate integration together with the protease inhibitor Ro 31-8959 caused apoptotic cell death of HIV infected cells with total extermination of the virus. This combination did not have any effect on non-infected cells. Thus it appears that cell death is promoted only in the infected cells. It is our view that the results described in this work suggest a novel approach to specifically promote death of HIV-1 infected cells and thus may eventually be developed into a new and general anti-viral therapy.© 2010 Levin et al; licensee BioMed Central Ltd. Source

Discover hidden collaborations