Entity

Time filter

Source Type


Floriani S.L.,Campus Universitario | Virmond E.,Campus Universitario | Luiz D.B.,Campus Universitario | Althoff C.A.,Albrecht Industrial Equipments Ltd | And 2 more authors.
Journal of Energy Resources Technology, Transactions of the ASME | Year: 2010

Industrially, many solid wastes can be classified as biomass and their usage reduces disposal costs. In this work, seven wastes from textile and food industries were characterized chemically and physically and the gaseous emissions resulting from the combustion of three of them (textile residues 3, TR3; coffee grounds; and a mixture of meat processing industry wastewater sludge and saw dust (1:9) in weight, SS1) in a pilot scale cyclone type combustor were measured. Their potential for utilization as energy sources was assessed by comparing the emissions to current legislation. Chemical properties showed that the volatile matter values of all biomass were high, which indicate that the solids burn rapidly. Some biomass presented high levels of sulfur and consequently high levels of SO 2 emission when burned. The lower heating values ranged from 6.44 MJ kg-1 (dry and ash free, daf) to 22.93 MJ kg-1 (daf) and thermogravimetric analysis of the biomasses showed ignition temperatures and maximum burning rates, which were compared with other papers' data. Four combustion tests were carried out in a cyclone type combustor and CO, CO 2, NO x, C xH y, and SO 2 were measured. Moisture content and particulate matter were also measured during the combustion tests and showed effective combustion conditions. Volatile organic compounds were analyzed by gas chromatography-mass spectrometry and their content values were expressed as total organic carbon (TOC), being all TOC emissions below the limits imposed by the regulations taken as reference. Gaseous emissions were compared with limits imposed by Brazilian and international current legislations, what showed that the usage of these biomasses as energy sources is possible; however, gas treatment would be required, especially if the solid presents high levels of sulfur and chlorine. Copyright © 2010 by ASME. Source


Batistella L.,Federal University of Santa Catarina | Silva V.,Federal University of Santa Catarina | Suzin R.C.,Federal University of Santa Catarina | Virmond E.,Federal University of Santa Catarina | And 3 more authors.
Waste Management | Year: 2015

Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5MJkg-1, db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42ng I-TEQNm-3). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67wt%, db) and low calcium concentration (22.99gkg-1) found in the sludge. The high concentration of SO2 in the flue gas (4776.77mgNm-3) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions, such as the installation of exhaust gas-cleaning systems. According to previous studies, the efficient operation of such cleaning systems is also effective for metals emission control, which makes the combustion of sewage sludge a feasible treatment method from both energetic and environmental perspectives. © 2015 Elsevier Ltd. Source


Virmond E.,Federal University of Santa Catarina | Schacker R.L.,Federal University of Santa Catarina | Albrecht W.,Albrecht Industrial Equipments Ltd | Althoff C.A.,Albrecht Industrial Equipments Ltd | And 3 more authors.
Journal of Energy Resources Technology, Transactions of the ASME | Year: 2010

The solid waste generated from the apple juice industry (apple bagasse (AB)) was characterized as a fuel, and the potential for its utilization as an alternative energy source was assessed through its combustion in a pilot scale cyclone combustor. A comparative evaluation of the AB and sawdust (SD) properties, as well as of the emissions during the combustion tests, was performed. The high energy content of AB (lower heating value (LHV) equal to 21.09 MJ kg-1), dry and ash-free (daf) basis, which is 26.9% higher than the LHV of SD (16.62 MJ kg-1, daf), and combined with the high volatile matter content (85.36 wt %, daf) improve the ignition and burning of the solids. The emissions of CO, SO2, and NOx and the total organic carbon (TOC) were compared with guideline limits established by Brazilian and international legislation. AB generated much lower CO than sawdust in spite of almost half of excess air levels (13% compared with 26%) and met even the stringent limit of the German regulation for waste incineration. The unburned carbon percentages found in the ash resulted from SD and AB combustion tests were 0.24% and 0.96% in weight, respectively. The absence of sulfur in AB composition represents an advantage with nondetectable SO2. The average level of NOx emission with SD combustion was 242 mg N m-3 and met all the regulation limits. The average NOx emission with AB combustion though was 642 mg N m-3 and met the U.S. EPA regulation but was marginally higher than the Brazilian norm by 15%. TOC concentrations remained below the limits considered even though the TOC level was higher in the AB combustion test. Polycyclic aromatic hydrocarbons (PAH) were not detected or were under the quantification limit of the equipment used in their analysis. Comparing the properties, the burning profiles of SD and AB, and the emissions from their combustion tests, it can be stated that the waste originating from the apple juice industry is suitable for direct combustion, constituting a renewable energy source for this industrial sector. © 2010 American Society of Mechanical Engineers. Source


Virmond E.,Federal University of Santa Catarina | Schacker R.L.,Federal University of Santa Catarina | Albrecht W.,Albrecht Industrial Equipments Ltd | Althoff C.A.,Albrecht Industrial Equipments Ltd | And 3 more authors.
Energy | Year: 2011

The biosolids originating from the wastewater treatment process of two meat processing plants (LFP and LFG) were characterized as a fuel and their potential for utilization as alternative energy sources was assessed through the combustion of LFP in a pilot scale cyclone combustor. A comparative evaluation of the LFP, LFG and SD (sawdust) properties as well as the emissions during the combustion test was performed. The high energy content of LFP (LHV (lower heating value) equal to 25.77 MJ kg-1) and LFG (LHV = 25.89 MJ kg-1), both dry and ash free (daf), combined with the high volatile matter content (85.29 and 85.61 wt%, daf, respectively) improve the ignition and burning of the solids. Also, the fouling and slagging tendencies of the ashes were predicted based on the fuel ash composition and ash fusibility correlations. The emissions of CO, SO2, and NOx and total organic carbon (TOC) were compared to guideline limits established by Brazilian and international legislation. The TOC concentrations were below the emission limits. The high level of nitrogen in LFP (9.24 wt%, daf) led to high levels of NOx. In this regard, further combustion tests are being performed by the authors. © 2010 Elsevier Ltd. Source


Virmond E.,Federal University of Santa Catarina | De Sena R.F.,Federal University of Santa Catarina | De Sena R.F.,Federal University of Paraiba | Albrecht W.,Albrecht Industrial Equipments Ltd | And 3 more authors.
Waste Management | Year: 2012

In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31MJkg-1 to 29.14MJkg-1, on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57wt.% and 85.36wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. © 2012 Elsevier Ltd. Source

Discover hidden collaborations