Alberta Pacific Forest Industries Inc.

Alberta, Canada

Alberta Pacific Forest Industries Inc.

Alberta, Canada
SEARCH FILTERS
Time filter
Source Type

Grover B.E.,Alberta Pacific Forest Industries Inc. | Bokalo M.,University of Alberta | Greenway K.J.,Alberta Research Council | Greenway K.J.,Environment Canada
Forestry Chronicle | Year: 2015

A large component of the boreal mixedwood forest is comprised of aspen and white spruce mixtures of varying proportions and ages. The slower growing white spruce usually starts as an understory component but will succeed to a white sprucedominated stand after aspen break-up. Since both species are utilized by the forest industry, one method of maximizing total yield is to protect the unmerchantable white spruce understory while harvesting the merchantable aspen overstory. Although some of the white spruce understory is lost when the machine corridors are harvested, future conifer yield is augmented by the accelerated growth of the protected spruce component, a result of increased light levels. In a 10 year trial comparing the growth of released versus control understory spruce, annual height growth, diameter growth and volume increment were 76%, 152% and 83% higher, respectively, for the released conifer compared to the control. In order to account for the yield implications in timber supply analysis, accurate forecasts of future stand development can only be obtained through the use of a forest growth model since long-term data are not available. The Mixedwood Growth Model (MGM) has a unique architecture that allows for the modeling of various strata in understory protection stands. This "multi-strata" modeling approach was used to forecast the combined yield of all the strata, including the impact of adjacent strata with regards to light availability. Operational examples of understory protection, data on white spruce release and aspen regeneration, as well as modeled volume forecasts are presented.


Cai T.,Natural Resources Canada | Price D.T.,Natural Resources Canada | Orchansky A.L.,Micrometeorology Consultant | Thomas B.R.,Alberta Pacific Forest Industries Inc. | Thomas B.R.,University of Alberta
Ecosystems | Year: 2011

Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety "Walker") established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (Re) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21 g C m-2 y-1 in year 1 to 469 g C m-2 y-1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330 g C m-2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5 years likely exceeded 630 g C m-2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and Re were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281 mm in year 1 to 323 mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations. © 2011 Her Majesty the Queen in right of Canada.


Arango-Velez A.,University of Alberta | Zwiazek J.J.,University of Alberta | Thomas B.R.,University of Alberta | Thomas B.R.,Alberta Pacific Forest Industries Inc. | And 2 more authors.
Physiologia Plantarum | Year: 2011

The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress. © Physiologia Plantarum 2011.


Rousi M.,Finnish Forest Research Institute | Possen B.J.H.M.,Finnish Forest Research Institute | Hagqvist R.,Finnish Forest Research Institute | Thomas B.R.,Alberta Pacific Forest Industries Inc.
Silva Fennica | Year: 2012

Earlier provenance research has indicated poor success even in short distance transfers (> 2-3° latitude) of silver birch (Betula pendula Roth) southward from their origin. These results may indicate poor adaptability of silver birch to a warming climate. Some of the scenarios for a warming climate in Finland suggest effective heat sums are likely to double in the north and increase 1.5 fold in the south for the period of 2070-2099. Consequently, the outlook for silver birch appears bleak. To study the acclimation of birch to this projected change we established a provenance trial in northeastern Alberta, Canada, at the temperature area currently predicted for Central Finland (lat. 64-66°N) at the turn of this century (1400 dd). Our 10-year experiment showed that all the Finnish provenances (origins 61-67°N) have acclimated well to the warmer growth conditions experienced in Alberta at 54°N. These results suggest that silver birch has the potential to acclimate to thermal conditions predicted for Finland at the end of the 21st century. Our results also indicate that silver birch has the potential as a plantation species in Canada, where the Finnish birch grew faster in the boreal forest region of Canada than local paper birch (Betula papyrifera Marsh.) provenances.


Hamanishi E.T.,University of Toronto | Thomas B.R.,Alberta Pacific Forest Industries Inc. | Thomas B.R.,University of Alberta | Campbell M.M.,University of Toronto
Journal of Experimental Botany | Year: 2012

Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar. © 2012 The Author.


Hamanishi E.T.,University of Toronto | Raj S.H.,University of Toronto | Wilkins O.,University of Toronto | Thomas B.R.,Alberta Pacific Forest Industries Inc. | And 4 more authors.
Plant, Cell and Environment | Year: 2010

Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of genome responsiveness to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome using six different Populus balsamifera L. genotypes and Affymetrix GeneChip technology. Within a given genotype there was a positive correlation between the magnitude of water-deficit induced changes in transcript abundance across the transcriptome, and the capacity of that genotype to maintain growth following water deficit. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses. © 2010 Blackwell Publishing Ltd.


Leboldus J.M.,University of Alberta | Blenis P.V.,University of Alberta | Thomas B.R.,Alberta Pacific Forest Industries Inc.
Plant Disease | Year: 2010

Most artificial inoculations of Populus spp. stems with Septoria musiva have required host wounding to induce canker development; in the absence of wounds, frequencies of cankers have been low. Three greenhouse inoculation experiments were conducted to demonstrate the reliability and repeatability of an inoculation method that did not require wounding. In the first, 16 clones of hybrid poplar were inoculated with three isolates of S. musiva to compare responses following wounding and inoculation with mycelium (wound inoculation) with responses following inoculation of nonwounded trees by spraying with a conidial suspension (spray inoculation). Stem disease severity among clones following spray inoculation was correlated with stem disease severity following wound inoculation. A significant clone-isolate interaction was detected with spray inoculation but not wound inoculation. In the other two greenhouse experiments, 29 clones of hybrid poplar and 69 clones of Populus balsamifera were inoculated with a spore suspension mixture of three isolates. In both cases, the experimental error was similar to that obtained in previous experiments, in which trees were wound inoculated, and was adequately small to permit detection of differences in responses among clones. Ultimately, field studies will be needed to determine the best inoculation method for predicting stem responses to this pathogen under field conditions. However, relative to wound inoculation, spray inoculation of non- wounded trees has the advantage of yielding faster results, permitting inoculation with a mixture of isolates, and not circumventing potential mechanisms for resisting penetration. The ability to infect stems without wounding creates opportunities for numerous types of epidemiological and disease control studies that are difficult to conduct with wound inoculation. © 2010 The American Phytopathological Society.


Schreiber S.G.,University of Alberta | Hamann A.,University of Alberta | Hacke U.G.,University of Alberta | Thomas B.R.,University of Alberta | Thomas B.R.,Alberta Pacific Forest Industries Inc.
Plant, Cell and Environment | Year: 2013

In recent years, thousands of hectares of hybrid poplar plantations have been established in Canada for the purpose of carbon sequestration and wood production. However, boreal planting environments pose special challenges that may compromise the long-term survival and productivity of such plantations. In this study, we evaluated the effect of winter stress, that is, frequent freeze-thaw and extreme cold events, on growth and survival of 47 hybrid poplar clones in a long-term field experiment. We further assessed physiological and structural traits that are potentially important for cold tolerance for a selected set of seven clones. We found that trees with narrow xylem vessels showed reduced freezing-induced embolism and showed superior productivity after 16 growing seasons. With respect to cold hardiness of living tissues, we only observed small differences among clones in early autumn, which were nonetheless significantly correlated to growth. Maximum winter cold hardiness and the timing of leaf senescence and budbreak were not related to growth or survival. In conclusion, our data suggest that reduction of freezing-induced embolism due to small vessel diameters is an essential adaptive trait to ensure long-term productivity of hybrid poplar plantations in boreal planting environments. © 2012 Blackwell Publishing Ltd.


Hart J.F.,University of British Columbia | de Araujo F.,University of British Columbia | Thomas B.R.,University of Alberta | Thomas B.R.,Alberta Pacific Forest Industries Inc. | Mansfield S.D.,University of British Columbia
Forests | Year: 2013

Trembling awspen (Populus tremuloides Michx.) is one of the most abundant poplar species in North America; it is native, displays substantial breadth in distribution inhabiting several geographical and climatic ecoregions, is notable for its rapid growth, and is ecologically and economically important. As the demand for raw material continues to increase rapidly, there is a pressing need to improve both tree quality and growth rates via breeding efforts. Hybridization is considered one of the most promising options to simultaneously accelerate these tree characteristics, as it takes advantage of heterosis. Two aspen species showing particular promise for hybridization with trembling aspen are European aspen (P. tremula) and Chinese aspen (P. davidiana) because their native climates are similar to that of P. tremuloides and are also very easy to hybridize. In 2003, aspen clones were planted in Athabasca, Alberta from the following species crosses: open pollinated (OP) P. tremuloides (NN), OP P. davidiana (CC), P. tremula × P. tremula (EE), P. tremula × P. tremuloides (EN), and P. tremuloides × P. davidiana (CN). In November 2010, growth measurements and core samples were taken from seven-year field grown clones. Comparisons of the mean growth and cell wall traits were made between crosses using generalized linear model least squares means tests for stem volume, fiber length, fiber width, coarseness, wood density, microfibril angle, total cell wall carbohydrate and lignin content, and lignin composition. The results clearly indicated that the inter-specific crosses offer a means to breed for more desirable wood characteristics than the intra-specific Populus spp. crosses. © 2013 by the authors. © 2013 by the authors.


Schreiber S.G.,University of Alberta | Hacke U.G.,University of Alberta | Hamann A.,University of Alberta | Thomas B.R.,University of Alberta | Thomas B.R.,Alberta Pacific Forest Industries Inc.
New Phytologist | Year: 2011

Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected aspen and hybrid poplar genotypes grown at a boreal planting site in Alberta, Canada. Variability in these traits was statistically evaluated based on a blocked experimental design. We found that genotypes of trembling aspen were more resistant to cavitation, exhibited more negative water potentials, and were more water-use-efficient than hybrid poplars. Under the boreal field test conditions, which included major regional droughts, height growth was negatively correlated with branch vessel diameter (Dv) in both aspen and hybrid poplars and differences in Dv were highly conserved in aspen trees from different provenances. Differences between the hybrid poplars and aspen provenances suggest that these two groups employ different water-use strategies. The data also suggest that vessel diameter may be a key trait in evaluating growth performance in a boreal environment. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

Loading Alberta Pacific Forest Industries Inc. collaborators
Loading Alberta Pacific Forest Industries Inc. collaborators