Entity

Time filter

Source Type

Sherwood, Australia

Palmer W.A.,Alan Fletcher Research Station | Heard T.A.,CSIRO | Sheppard A.W.,CSIRO
Biological Control | Year: 2010

Considerable progress has been made towards the successful classical biological control of many of Australia's exotic weeds over the past decade. Some 43 new arthropod or pathogen agents were released in 19 projects. Effective biological control was achieved in several projects with the outstanding successes being the control of rubber vine, Cryptostegia grandiflora, and bridal creeper, Asparagus asparagoides. Significant developments also occurred in target prioritization, procedures for target and agent approval, funding, infrastructure and cooperation between agencies. Scientific developments included greater emphasis on climate matching, plant and agent phylogeny, molecular diagnostics, agent prioritization and agent evaluation. Crown Copyright © 2009.


Twigg L.E.,Vertebrate Pest Research Section | Parker R.W.,Alan Fletcher Research Station
Animal Welfare | Year: 2010

1080 (sodium fluoroacetate)-baiting programmes are an important and often the only option for reducing the impact of invasive vertebrate pests on biodiversity and agricultural production in Australia and New Zealand. These programmes are generally recognised as being target specific, and environmentally and user safe. Nevertheless, although 1080 has few recognised long-term side-effects, its potential to disrupt endocrine systems has been recently raised, and there is some conjecture regarding the humaneness of 1080 for certain target species. However, the assessment of the humaneness of any vertebrate pesticide must be commensurate with its mode of action, metabolism, target specificity, and operational use. This has not always occurred with 1080, particularly regarding these aspects, and its overall effects. The actual risk faced by non-target species during baiting operations is not accurately reflected simply by their sensitivity to 1080. 1080 is not endocrine-disrupting or carcinogenic, and because of the lag phase before signs of poisoning occur, the time from ingestion to death is not a reliable indicator of its humaneness. Moreover, functional receptors and neurological pathways are required to experience pain. However, as 1080 impairs neurological function, mainly through effects on acetylcholine and glutamate, and as this impairment includes some pain receptors, it is difficult to interpret the behaviour of affected animals, or to assess their ability to experience discomfort and pain. This has implications for assessing the merits of including ameliorative agents in 1080 baits aimed at further improving welfare outcomes. We also suggest that the assessment of the humaneness of any vertebrate pesticide should follow the ethical pest control approach, and on this basis, believe that the use of 1080 to reduce the detrimental impacts of invasive vertebrates is ethical, particularly with respect to the expectations of the wider community. © 2010 Universities Federation for Animal Welfare.


Dane Panetta F.,Alan Fletcher Research Station | Csurhes S.,Invasive Plants and Animals | Markula A.,Invasive Plants and Animals | Hannan-Jones M.,Invasive Plants and Animals
Plant Protection Quarterly | Year: 2011

The feasibility of state-wide eradication of 41 invasive plant taxa currently listed as 'Class 1 declared pests' under the Queensland Land Protection (Pest and Stock Route Management) Act 2002 was assessed using the predictive model 'WeedSearch'. Results indicated that all but one species (Alternanthera philoxeroides) could be eradicated, provided sufficient funding and labour were available. Slightly less than one quarter (24.4%) (n = 10) of Class 1 weed taxa could be eradicated for less than $100 000 per taxon. An additional 43.9% (n = 18) could be eradicated for between $100 000 and $1M per taxon. Hence, 68.3% of Class 1 weed taxa (n = 28) could be eradicated for less than $1M per taxon. Eradication of 29.3% (n = 12) is predicted to cost more than $1M per taxon. Comparison of these WeedSearch outputs with either empirical analysis or results from a previous application of the model suggests that these costs may, in fact, be underestimates. Considering the likelihood that each weed will cost the state many millions of dollars in long-term losses (e.g. losses to primary production, environmental impacts and control costs), eradication seems a wise investment. Even where predicted costs are over $1M, eradication can still offer highly favourable benefit:cost ratios. The total (cumulative) cost of eradication of all 41 weed taxa is substantial; for all taxa, the estimated cost of eradication in the first year alone is $8 618 000. This study provides important information for policy makers, who must decide where to invest public funding.


Skurka Darin G.M.,University of California at Davis | Schoenig S.,Integrated Pest Management Branch | Barney J.N.,University of California at Davis | Panetta F.D.,Alan Fletcher Research Station | DiTomaso J.M.,University of California at Davis
Journal of Environmental Management | Year: 2011

Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration. © 2010 Elsevier Ltd.


Hester S.M.,University of New England of Australia | Brooks S.J.,Tropical Weeds Research Center | Cacho O.J.,University of New England of Australia | Panetta F.D.,Alan Fletcher Research Station
Weed Research | Year: 2010

A simulation model that combines biological, search and economic components is applied to the eradication of a Miconia calvescens infestation at El Arish in tropical Queensland, Australia. Information on the year M. calvescens was introduced to the site, the number of plants controlled and the timing of control, is used to show that currently there could be M. calvescens plants remaining undetected at the site, including some mature plants. Modelling results indicate that the eradication programme has had a significant impact on the population of M. calvescens, as shown by simulated results for uncontrolled and controlled populations. The model was also used to investigate the effect of changing search effort on the cost of and time to eradication. Control costs were found to be negligible over all levels of search effort tested. Importantly, results suggest eradication may be achieved within several decades, if resources are increased slightly from their current levels and if there is a long-term commitment to funding the eradication programme. © 2010 The Authors. Journal Compilation © 2010 European Weed Research Society.

Discover hidden collaborations