Cambridge, United Kingdom
Cambridge, United Kingdom

Time filter

Source Type

Ranganath L.R.,University of Liverpool | Milan A.M.,University of Liverpool | Hughes A.T.,University of Liverpool | Dutton J.J.,University of Liverpool | And 31 more authors.
Annals of the Rheumatic Diseases | Year: 2016

Background: Alkaptonuria (AKU) is a serious genetic disease characterised by premature spondyloarthropathy. Homogentisate-lowering therapy is being investigated for AKU. Nitisinone decreases homogentisic acid (HGA) in AKU but the dose-response relationship has not been previously studied. Methods: Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1) was an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study. The primary objective was to investigate the effect of different doses of nitisinone once daily on 24-h urinary HGA excretion (u-HGA24) in patients with AKU after 4 weeks of treatment. Forty patients were randomised into five groups of eight patients each, with groups receiving no treatment or 1 mg, 2 mg, 4 mg and 8 mg of nitisinone. Findings: A clear dose-response relationship was observed between nitisinone and the urinary excretion of HGA. At 4 weeks, the adjusted geometric mean u-HGA24 was 31.53 mmol, 3.26 mmol, 1.44 mmol, 0.57 mmol and 0.15 mmol for the no treatment or 1 mg, 2 mg, 4 mg and 8 mg doses, respectively. For the most efficacious dose, 8 mg daily, this corresponds to a mean reduction of u-HGA24 of 98.8% compared with baseline. An increase in tyrosine levels was seen at all doses but the dose-response relationship was less clear than the effect on HGA. Despite tyrosinaemia, there were no safety concerns and no serious adverse events were reported over the 4 weeks of nitisinone therapy. Conclusions: In this study in patients with AKU, nitisinone therapy decreased urinary HGA excretion to low levels in a dose-dependent manner and was well tolerated within the studied dose range.


Nemethova M.,Slovak Academy of Sciences | Radvanszky J.,Slovak Academy of Sciences | Kadasi L.,Slovak Academy of Sciences | Kadasi L.,Comenius University | And 31 more authors.
European Journal of Human Genetics | Year: 2016

Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics. We identified 12 novel DNA variants: one was identified in patients from Brazil (c.557T>A), Slovakia (c.500C>T) and France (c.440T>C), three in patients from India (c.469+6T>C, c.650-85A>G, c.158G>A), and six in patients from Italy (c.742A>G, c.614G>A, c.1057A>C, c.752G>A, c.119A>C, c.926G>T). Thus, the total number of potential AKU-causing variants found in 380 patients reported in the HGD mutation database is now 129. Using mCSM and DUET, computational approaches based on the protein 3D structure, the novel missense variants are predicted to affect the activity of the enzyme by three mechanisms: decrease of stability of individual protomers, disruption of protomer-protomer interactions or modification of residues in the region of the active site. We also present an overview of AKU in Italy, where so far about 60 AKU cases are known and DNA analysis has been reported for 34 of them. In this rather small group, 26 different HGD variants affecting function were described, indicating rather high heterogeneity. Twelve of these variants seem to be specific for Italy. © 2016 Macmillan Publishers Limited.


PubMed | Emek Medical Center, University of Liverpool, Nordic Bioscience, Aix - Marseille University and 17 more.
Type: Journal Article | Journal: European journal of human genetics : EJHG | Year: 2015

Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics. We identified 12 novel DNA variants: one was identified in patients from Brazil (c.557T>A), Slovakia (c.500C>T) and France (c.440T>C), three in patients from India (c.469+6T>C, c.650-85A>G, c.158G>A), and six in patients from Italy (c.742A>G, c.614G>A, c.1057A>C, c.752G>A, c.119A>C, c.926G>T). Thus, the total number of potential AKU-causing variants found in 380 patients reported in the HGD mutation database is now 129. Using mCSM and DUET, computational approaches based on the protein 3D structure, the novel missense variants are predicted to affect the activity of the enzyme by three mechanisms: decrease of stability of individual protomers, disruption of protomer-protomer interactions or modification of residues in the region of the active site. We also present an overview of AKU in Italy, where so far about 60 AKU cases are known and DNA analysis has been reported for 34 of them. In this rather small group, 26 different HGD variants affecting function were described, indicating rather high heterogeneity. Twelve of these variants seem to be specific for Italy.


Hall A.K.,Cudos | Sireau N.,AKU Society | Raffai F.,Findacure
Expert Opinion on Orphan Drugs | Year: 2014

There is a large unmet need for helping rare disease patient groups and Findacure aims to empower these groups to become effective campaigners for change. Through its scientific meetings, Findacure also aims to gain the support of the scientific community in recognizing the importance of 'fundamental diseases' (conditions that manifest themselves as extreme and rare genetic disorders that offer a unique opportunity to better understand other diseases, including many common ones) and help to create a receptive research environment. Since it may often be commercially unattractive to develop treatments for many fundamental diseases, Findacure helps facilitate patient groups to themselves drive the development of treatments for fundamental diseases, using multi-stakeholder collaborative models. © 2014 Informa UK, Ltd.


Lock E.,Liverpool John Moores University | Ranganath L.R.,University of Liverpool | Timmis O.,AKU Society
Current Rheumatology Reports | Year: 2014

Nitisinone 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC), an effective herbicide, is the licensed treatment for the human condition, hereditary tyrosinaemia type 1 (HT-1). Its mode of action interrupts tyrosine metabolism through inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). Nitisinone is a remarkable safe drug to use with few side effects reported. Therefore, we propose that it should be investigated as a potential treatment for other disorders of tyrosine metabolism. These include alkaptonuria (AKU), a rare disease resulting is severe, early-onset osteoarthritis. We present a case study from the disease, and attempts to use the drug both off-label and in clinical research through the DevelopAKUre consortium. © 2014, Springer Science+Business Media New York.

Loading AKU Society collaborators
Loading AKU Society collaborators