Paris, France
Paris, France

Air Liquide S.A., or Air Liquide , is a French multinational company which supplies industrial gases and services to various industries including medical, chemical and electronic manufacturers. Founded in 1902, it is the world's second largest supplier of industrial gases by revenues and has operations in over 80 countries. It is headquartered in the 7th arrondissement of Paris, France. Air Liquide owned the patent for Aqua-Lung until it time-expired.Although Air Liquide's headquarters are located in Paris, France, it also has a major site in Japan , as well as in Houston, TX, and Newark, DE, USA. There is an emphasis on research and development throughout the entire Air Liquide company. R&D targets the creation of not only industrial gases, but also gases that are used in products such as healthcare items, electronic chips, foods and chemicals. The major R&D groups within Air Liquide focus on analysis, bioresources , combustion, membranes, modeling, and the production of Hydrogen gas.As of 2009, the company is ranked 484 in the Fortune Global 500. Wikipedia.


Time filter

Source Type

Patent
Air Liquide | Date: 2017-01-20

Parallel membrane elements are arranged in parallel within a pressure vessel. A sealing body is disposed within the pressure vessel and is compressed against an inner surface of the pressure vessel to provide a leak-right seal in between a feed gas side of the sealing body and a non-permeate side of the sealing body. The sealing body may be slid within the pressure vessel without damaging the sealing body and in all cases without requiring mechanical assistance.


Patent
Air Liquide | Date: 2016-09-30

Liquid cryogen from a tank having a head space pressure P1 is vaporized with a pressure building vaporizer to gaseous cryogen and the pressure of the gaseous cryogen is built to a pressure P2. The pressurized gaseous cryogen at pressure P2 is expanded across an expander to decrease its pressure and fed to a point of use at an installation including the vaporizer at a pressure P3. P22P3. Energy from the expanded gas may be recovered in the form of mechanical energy, electrical energy.


Methods, burner, apparatuses, and systems are provided for controlling a velocity of a jet of gas exiting a burner when the gas is heated or not and at a corresponding second higher temperature or lower first temperature. Through the use of a temperature-sensitive magnetic valve, the flow of a gas can be redirected to maintain velocity of the gas as delivered to a combustion chamber based on the temperature of the gas. The temperature-sensitive magnetic valve can redirect flow of the gas based on the magnetic state of a ferromagnetic material. The state of the temperature-sensitive magnetic valve changes based on the temperature of the gas to maintain the velocity of the gas delivered through an outlet of the burner to the combustion chamber. Thus, heated gases and standard temperature gases can be delivered at approximately equal velocities thus maintaining flame size and shape.


Patent
Air Liquide | Date: 2017-05-17

According to the method for heat treating at least one metallic work piece according to the present invention said at least one metallic work piece is subjected to a predetermined temperature time profile (1) in a furnace, wherein at least intermittent a process gas is introduced into the furnace atmosphere to define the composition of said furnace atmosphere, wherein the introduction of the process gas is controlled regarding at least one of the following parameters: the volume of the process gas introduced into the furnace and the composition of the process gas in such a way that during at least one of the following operations: heating up and cooling down the at least one work piece while the temperature of the furnace is within a predetermined critical temperature range in which internal oxidation occurs within the metal of the work piece being defined by a lower critical temperature (T_(L)) and an upper critical temperature (T_(U))the furnace atmosphere is low in oxygen whereas above said upper critical temperature (T_(U)) the furnace atmosphere is defined independently of the oxygen content in the furnace atmosphere. The method according to the present invention allows heat treatment processes with a significantly reduced internal oxidation while allowing a broad choice of process gases for temperatures above the upper critical temperature (T_(U)).


The invention provides an aqueous-based composition which comprises a) at least one bispyridinium alkane (for example octenidine) and b) at least one stabilizer selected from antioxidants, complexing agents, reducing agents, UV filters and photoprotective agents, in particular -tocopherol, and BHT. The composition can also comprise c) one or more auxiliaries selected from, for example, nonionic surfactants, ethers, solvents and polymers, in particular fatty alcohol alkoxylates and alkoxylated fatty acid monoglycerides. The presence of the stabilizer reduces or prevents the appearance of decomposition products of bispyridinium alkanes and, in the case of the presence of auxiliaries, of decomposition products of the auxiliaries, such as ethers and peroxides.


Patent
Air Liquide | Date: 2017-05-31

Glass production process whereby at least part of a reducing gas composition (100) introduced into a float chamber (4) receiving molten glass (3) from a melting chamber heated by combustion of fuel (27) with oxidant (28), is preheated by heat exchange with fumes (25) evacuated from a melting furnace (2) before said part of the reducing gas composition (100) is introduced in the float chamber (4) and installation for use in said glass production process.


The CryoHub innovation project will investigate and extend the potential of large-scale Cryogenic Energy Storage (CES) and will apply the stored energy for both cooling and energy generation. By employing Renewable Energy Sources (RES) to liquefy and store cryogens, CryoHub will balance the power grid, while meeting the cooling demand of a refrigerated food warehouse and recovering the waste heat from its equipment and components. The intermittent supply is a major obstacle to the RES power market. In reality, RES are fickle forces, prone to over-producing when demand is low and failing to meet requirements when demand peaks. Europe is about to generate 20% of its required energy from RES by 2020, so that the proper RES integration poses continent-wide challenges. The Cryogenic Energy Storage (CES), and particularly the Liquid Air Energy Storage (LAES), is a promising technology enabling on-site storage of RES energy during periods of high generation and its use at peak grid demand. Thus, CES acts as Grid Energy Storage (GES), where cryogen is boiled to drive a turbine and to restore electricity to the grid. To date, CES applications have been rather limited by the poor round trip efficiency (ratio between energies spent for and retrieved from energy storage) due to unrecovered energy losses. The CryoHub project is therefore designed to maximise the CES efficiency by recovering energy from cooling and heating in a perfect RES-driven cycle of cryogen liquefaction, storage, distribution and efficient use. Refrigerated warehouses for chilled and frozen food commodities are large electricity consumers, possess powerful installed capacities for cooling and heating and waste substantial amounts of heat. Such facilities provide the ideal industrial environment to advance and demonstrate the LAES benefits. CryoHub will thus resolve most of the above-mentioned problems at one go, thereby paving the way for broader market prospects for CES-based technologies across Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-IA | Phase: FCH-03.1-2015 | Award Amount: 106.22M | Year: 2016

Hydrogen Mobility Europe 2 (H2ME 2) brings together action in 8 European countries to address the innovations required to make the hydrogen mobility sector truly ready for market. The project will perform a large-scale market test of hydrogen refuelling infrastructure, passenger and commercial fuel cell electric vehicles operated in real-world customer applications and demonstrate the system benefits generated by using electrolytic hydrogen solutions in grid operations. H2ME 2 will increase the participation of European manufacturers into the hydrogen sector, and demonstrate new vehicles across a range of platforms, with increased choice: new cars (Honda, and Daimler), new vans (range extended vehicles from Renault/Symbio and Renault/Nissan/Intelligent Energy) and a new medium sized urban delivery truck (Renault Trucks/Symbio). H2ME 2 develops an attractive proposition around range extended vehicles and supports a major roll-out of 1,000 of these vehicles to customers in France, Germany, Scandinavia and the UK. 1,230 new hydrogen fuelled vehicles will be deployed in total, trebling the existing fuel cell fleet in Europe. H2ME 2 will establish the conditions under which electrolytic refuelling stations can play a beneficial role in the energy system, and demonstrate the acquisition of real revenues from provision of energy services for aggregated electrolyser-HRS systems at a MW scale in both the UK and France. This has the further implication of demonstrating viable opportunities for reducing the cost of hydrogen at the nozzle by providing valuable energy services without disrupting refuelling operations. H2ME 2 will test 20 new HRS rigorously at high level of utilisation using the large vehicle deployment. The loading of stations by the end of the project is expected to average 20% of their daily fuelling capacity, with some stations exceeding 50% or more. This will test the HRS to a much greater extent than has been the case in previous projects.


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-IA | Phase: FCH-01.7-2014 | Award Amount: 71.90M | Year: 2015

Hydrogen Mobility Europe (H2ME) brings together Europes 4 most ambitious national initiatives on hydrogen mobility (Germany, Scandinavia, France and the UK). The project will expand their developing networks of HRS and the fleets of fuel cell vehicles (FCEVs) operating on Europes roads, to significantly expand the activities in each country and start the creation of a pan-European hydrogen fuelling station network. In creating a project of this scale, the FCH JU will create not only a physical but also a strategic link between the regions that are leading in the deployment of hydrogen. The project will also include observer countries (Austria, Belgium and the Netherlands), who will use the learnings from this project to develop their own hydrogen mobility strategies. The project is the most ambitious coordinated hydrogen deployment project attempted in Europe. The scale of this deployment will allow the consortium to: Trial a large fleet of FCEVs in diverse applications across Europe - 200 OEM FCEVs (Daimler and Hyundai) and 125 fuel cell range-extended vans (Symbio FCell collaborating with Renault) will be deployed Deploy 29 state of the art refuelling stations, using technology from the full breadth of Europes hydrogen refuelling station providers. The scale will ensure that stations will be lower cost than in previous projects and the breadth will ensure that Europes hydrogen station developers advance together Conduct a real world test of 4 national hydrogen mobility strategies and share learnings to support other countries strategy development Analyse the customer attitude to the FCEV proposition, with a focus on attitudes to the fuelling station networks as they evolve in each country Assess the performance of the refuelling stations and vehicles in order to provide data of a sufficient resolution to allow policy-makers, early adopters and the hydrogen mobility industry to validate the readiness of the technology for full commercial roll-out.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 688.50K | Year: 2017

PROMECA strategic objective is to substantially contribute to the increase of knowledge, skills, and competitiveness in the European research area and industry, through the design and deployment of a thorough plan of research and secondment of researchers between top-level EU academia and industrial partners, contributing to the main European Policies on innovation. In line with the MSCA-RISE general objectives, the project will: Support career development and training of 44 researchers through international and inter-sectoral mobility among 3 academia and 3 industrial partners in 4 European countries; Promote sharing of knowledge and ideas from research to the market (and vice versa) in a systematic way, through the participation of researchers to 3 focused research groups where scientific and industrial mix of competences are ensured, and the organization of 8 project meetings, where research findings will be assessed and validated among groups. Carry out a thorough training of researchers in 6 dedicated workshops, each with a different focus, also adding key entrepreneurial skills and innovation management. As an ultimate R&D goal, PROMECA will develop, test, and validate an innovative membrane reactor integrating new structured catalysts and selective membranes to improve the overall performance, durability, cost effectiveness, and sustainability over different industrially interesting processes, with distributed hydrogen production as the main focus of the project. The project will bring substantial impacts in terms of skills and knowledge development of the researchers, as well as higher R&I output, contributing to convert more ideas into products. Organizations involved will strongly boost their capacity to carry out R&I activities in multidisciplinary and inter-sectorial collaborations. Finally, the project will enhance the innovation potential and competitiveness of the EU industry, reinforcing its world leadership as a true knowledge-driven industry

Loading Air Liquide collaborators
Loading Air Liquide collaborators