Time filter

Source Type

Heilbronn, Germany

Hawkins G.,University of Reading | Sherwood R.,University of Reading | Djotni K.,University of Reading | Coppo P.,SELEX Galileo | And 2 more authors.
Applied Optics | Year: 2013

The sea and land surface temperature radiometer (SLSTR) is a nine-channel visible and infrared highprecision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU global monitoring for environment and security (GMES) programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, the spectral thin-film multilayer design, and the system channel throughput analysis for the combined interference filter and dichroic beam splitter coatings to discriminate wavelengths at 3.74, 10.85, 12.0 μm. The rationale for selection of thin-film materials, the deposition technique, and environmental testing, inclusive of humidity, thermal cycling, and ionizing radiation testing are also described. © 2013 Optical Society of America. Source

Bauer C.,Clausthal University of Technology | Bauer C.,Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut | Bauer C.,AIM INFRAROT MODULE GmbH | Willer U.,Clausthal University of Technology | And 2 more authors.
Optical Engineering | Year: 2010

Detection of explosives is an emerging task for maintaining civil security. Optical methods and especially tunable diode laser spectroscopy are discussed as means for providing fast and reliable data. Selective and sensitive detection is possible in the midinfrared spectral region; however, until recently, small and easy to operate laser sources were not readily available for applications outside the laboratory. The situation changes with the maturation of quantum cascade lasers (QCLs). We present detection methods based on photofragmentation and subsequent midinfrared detection of the fragments for the detection of nitrogen-based explosives. For this type of explosive, the very low vapor pressure makes the use of direct spectroscopic techniques extremely difficult, since the equilibrium concentrations are in the ppb to ppt range. Peroxide-based explosives like triacetone triperoxide possess a much higher vapor pressure, making direct absorption spectroscopy and also a quartz-enhanced photoacoustic spectroscopy sensor possible. The progress and challenges of the application of QCLs, also with respect to interferences with other molecules present, are discussed. © 2010 Society of Photo-Optical Instrumentation Engineers. Source

Rehm R.,Fraunhofer Institute for Applied Solid State Physics | Walther M.,Fraunhofer Institute for Applied Solid State Physics | Rutz F.,Fraunhofer Institute for Applied Solid State Physics | Schmitz J.,Fraunhofer Institute for Applied Solid State Physics | And 5 more authors.
Journal of Electronic Materials | Year: 2011

Within a very few years, InAs/GaSb superlattice technology has proven its suitability for high-performance infrared imaging detector arrays. At the Fraunhofer Institute for Applied Solid State Physics (IAF) and AIM Infrarot-Module GmbH, efforts have been focused on developing mature fabrication technology for dual-color InAs/GaSb superlattice focal-plane arrays for simultaneous, colocated detection at 3 μm to 4 μm and 4 μm to 5 μm in the mid-wavelength infrared atmospheric transmission window. Integrated into a wide-field-of-view missile approach warning system for an airborne platform, a very low number of pixel outages and cluster defects is mandatory for bispectral detector arrays. Process refinements, intense root-cause analysis, and specific test methodologies employed at various stages during the process have proven to be the key for yield enhancements. © 2011 TMS. Source

Proceedings of SPIE - The International Society for Optical Engineering | Year: 2014

Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical solutions and key performance data for AIM's HOT cryocoolers will be presented. © 2014 SPIE. Source

Proceedings of SPIE - The International Society for Optical Engineering | Year: 2011

State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT [1] or InAsSb nBn [2] technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating 1/4" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical details and performance data will be shown. © 2011 SPIE. Source

Discover hidden collaborations