AIDS Vaccine Research Laboratory

Madison, WI, United States

AIDS Vaccine Research Laboratory

Madison, WI, United States
SEARCH FILTERS
Time filter
Source Type

Johnson B.,University of Wisconsin - Madison | Friedrich T.C.,AIDS Vaccine Research Laboratory
Pharmacology Research and Perspectives | Year: 2017

HIV-infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX biotransformation in HIV infection, but hepatic biotransformation pathways have not been evaluated directly. Systemic lupus erythematosus (SLE) is another chronic inflammatory disease with a higher incidence of sulfonamide HS, but it is unclear whether retroviral infection and SLE share risk factors for drug HS. We hypothesized that retroviral infection would lead to dysregulation of hepatic pathways of SMX biotransformation, as well as pathway alterations in common with SLE that could contribute to drug HS risk. We characterized hepatic expression profiles and enzymatic activities in an SIV-infected macaque model of retroviral infection, and found no evidence for dysregulation of sulfonamide drug biotransformation pathways. Specifically, NAT1, NAT2, CYP2C8, CYP2C9, CYB5R3, MARC1/2, and glutathione-related genes (GCLC, GCLM, GSS, GSTM1, and GSTP1) were not differentially expressed in drug naïve SIVmac239-infected male macaques compared to age-matched controls, and activities for SMX N-acetylation and SMX hydroxylamine reduction were not different. However, multiple genes that are reportedly over-expressed in SLE patients were also up-regulated in retroviral infection, to include enhanced immunoproteasomal processing and presentation of antigens as well as up-regulation of gene clusters that may be permissive to autoimmunity. These findings support the hypothesis that pathways downstream from drug biotransformation may be primarily important in drug HS risk in HIV infection. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.


Reynolds M.R.,AIDS Vaccine Research Laboratory | Weiler A.M.,AIDS Vaccine Research Laboratory | Piaskowski S.M.,AIDS Vaccine Research Laboratory | Piatak Jr. M.,SAIC | And 11 more authors.
Vaccine | Year: 2012

It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8 + (2-7 pool-specific responses) and CD4 + (5-19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with naïve controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to naïve controls. Post-infection we observed an average of only two anamnestic CD8 + T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines. © 2012 Elsevier Ltd.


Reynolds M.R.,AIDS Vaccine Research Laboratory | Weiler A.M.,AIDS Vaccine Research Laboratory | Piaskowski S.M.,AIDS Vaccine Research Laboratory | Kolar H.L.,AIDS Vaccine Research Laboratory | And 14 more authors.
Journal of Virology | Year: 2010

An effective human immunodeficiency virus (HIV) vaccine will likely need to reduce mucosal transmission and, if infection occurs, control virus replication. To determine whether our best simian immunodeficiency virus (SIV) vaccine can achieve these lofty goals, we vaccinated eight Indian rhesus macaques with SIVmac239Δnef and challenged them intrarectally (i.r.) with repeated low doses of the pathogenic heterologous swarm isolate SIVsmE660. We detected a significant reduction in acquisition of SIVsmE660 in comparison to that for naïve controls (log rank test; P = 0.023). After 10 mucosal challenges, we detected replication of the challenge strain in only five of the eight vaccinated animals. In contrast, seven of the eight control animals became infected with SIVsmE660 after these 10 challenges. Additionally, the SIVsmE660-infected vaccinated animals controlled peak acute virus replication significantly better than did the naïve controls (Mann-Whitney U test; P = 0.038). Four of the five SIVsmE660 vaccinees rapidly brought virus replication under control by week 4 postinfection. Unfortunately, two of these four vaccinated animals lost control of virus replication during the chronic phase of infection. Bulk sequence analysis of the circulating viruses in these animals indicated that recombination had occurred between the vaccine and challenge strains and likely contributed to the increased virus replication in these animals. Overall, our results suggest that a well-designed HIV vaccine might both reduce the rate of acquisition and control viral replication. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Wong Y.Y.,University of Wisconsin - Madison | Rakasz E.G.,AIDS Vaccine Research Laboratory | Gasper D.J.,University of Wisconsin - Madison | Friedrich T.C.,University of Wisconsin - Madison | And 2 more authors.
Toxicology | Year: 2016

Background Sulfonamide hypersensitivity has a high incidence in HIV infection and correlates with low CD4+ counts, but the mechanisms are not understood. The aims of this study were to determine whether trimethoprim/sulfamethoxazole (TMP/SMX) led to SMX adduct formation, immunogenicity, or signs of drug hypersensitivity in SIV-infected rhesus macaques, and whether differences in antioxidants, pro-inflammatory mediators, or SMX disposition were predictive of drug immunogenicity. Methods Nine macaques chronically infected with SIVmac239 and 7 non-infected controls were studied. Baseline blood ascorbate, glutathione, IFN-γ, LPS, sCD14, and cytochrome b5 reductase measurements were obtained, macaques were dosed with TMP/SMX (120 mg/kg/day p.o. for 14 days), and SMX metabolites, lymph node drug adducts, drug-responsive T cells, and anti-SMX antibodies were measured. Results Four of 9 of SIV-positive (44%), and 3 of 7 SIV negative (43%) macaques had drug-responsive T cells or antibodies to SMX. Two macaques developed facial or truncal rash; these animals had the highest levels of lymph node drug adducts. Antioxidants, pro-inflammatory mediators, and SMX metabolites were not predictive of drug immunogenicity; however, the Mamu DRB1*0401/0406/0411 genotype was significantly over-represented in immune responders. Conclusions Unlike other animal models, macaques develop an immune response, and possible rash, in response to therapeutic dosages of TMP/SMX. Studying more animals with CD4+ counts <200 cells/μl, along with moderately restricted ascorbate intake to match deficiencies seen in humans, may better model the risk of SMX hypersensitivity in HIV-infection. In addition, the role of Mamu-DRB1 genotype in modeling drug hypersensitivity in retroviral infection deserves further study. © 2016 Elsevier Ireland Ltd


It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8(+) (2-7 pool-specific responses) and CD4(+) (5-19 pool-specific responses) T-cell responses in IFN- ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with nave controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to nave controls. Post-infection we observed an average of only two anamnestic CD8(+) T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines.


PubMed | University of Wisconsin - Madison and AIDS Vaccine Research Laboratory
Type: | Journal: Toxicology | Year: 2016

Sulfonamide hypersensitivity has a high incidence in HIV infection and correlates with low CD4+ counts, but the mechanisms are not understood. The aims of this study were to determine whether trimethoprim/sulfamethoxazole (TMP/SMX) led to SMX adduct formation, immunogenicity, or signs of drug hypersensitivity in SIV-infected rhesus macaques, and whether differences in antioxidants, pro-inflammatory mediators, or SMX disposition were predictive of drug immunogenicity.Nine macaques chronically infected with SIVmac239 and 7 non-infected controls were studied. Baseline blood ascorbate, glutathione, IFN-, LPS, sCD14, and cytochrome bFour of 9 of SIV-positive (44%), and 3 of 7 SIV negative (43%) macaques had drug-responsive T cells or antibodies to SMX. Two macaques developed facial or truncal rash; these animals had the highest levels of lymph node drug adducts. Antioxidants, pro-inflammatory mediators, and SMX metabolites were not predictive of drug immunogenicity; however, the Mamu DRB1*0401/0406/0411 genotype was significantly over-represented in immune responders.Unlike other animal models, macaques develop an immune response, and possible rash, in response to therapeutic dosages of TMP/SMX. Studying more animals with CD4+ counts <200cells/l, along with moderately restricted ascorbate intake to match deficiencies seen in humans, may better model the risk of SMX hypersensitivity in HIV-infection. In addition, the role of Mamu-DRB1 genotype in modeling drug hypersensitivity in retroviral infection deserves further study.


It has recently been shown that polymorphism at the rhesus macaque TRIM5 locus can affect simian immunodeficiency virus (SIV) replication. Here we show that TRIM5 alleles can also affect acquisition of SIVsmE660. Animals coexpressing the TRIM5(TFP) and TRIM5(CypA) alleles took significantly longer to become infected with SIVsmE660, but not SIVmac239, after repeated limiting-dose intrarectal challenge than did animals expressing other TRIM5 allele combinations. Our results indicate that the TRIM5 alleles can be a barrier to productive infection and that this should be taken into account when designing acquisition studies using SIVsmE660 or related viruses.

Loading AIDS Vaccine Research Laboratory collaborators
Loading AIDS Vaccine Research Laboratory collaborators