Wuppertal, Germany
Wuppertal, Germany

Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.85M | Year: 2015

Viral infections are a major cause of disease, mortality and economic losses worldwide. Antiviral therapy is an essential instrument to control virus infections. At present, however, licensed antiviral drugs have been developed only against a limited number of viruses (e.g. HIV, HCV, influenza, herpesviruses). There is a clear and unmet need for antiviral drugs to treat infections with other important human pathogens. Europe needs well-trained experts with multidisciplinary skills to advance the antiviral drug development field. However, few, if any, European universities or research institutes have the ability to deliver an intersectoral training programme that covers the broad spectrum of disciplines important for antiviral drug development. The ANTIVIRALS partnership has been established to fill this gap. It consists of six outstanding European academic partners and four industrial partners (two large R&D companies, of which one is specialized in antiviral drug discovery and development, and two SMEs), and two partner organisations (incl. one SME specialised in education). All partners are leaders in their field, ensuring state-of-the-art training possibilities, and their skills are highly complementary. ANTIVIRALS aims to introduce 15 ESRs to state-of-the-art knowledge and technology applied in antiviral drug development through both local and network-wide training activities. Individual research projects, research training workshops and intersectoral secondments will be supplemented with complementary skills courses and dissemination activities to improve career development and perspectives. The industrial partners are actively involved in the entire programme and will organize an industry-oriented conference aimed at further bridging the gap between academia and industry. Thus, ANTIVIRALS offers talented researchers a multidisciplinary and intersectoral training programme and prepares them for a future leading role in antiviral drug development in Europe.


The present invention relates to the crystalline mono mesylate monohydrate salt of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide in a definite particle size range, particle size distribution and a specific surface area range, which has demonstrated increased long term stability and release kinetics from pharmaceutical compositions, as well as to pharmaceutical compositions containing said crystalline N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide mono mesylate monohydrate having the afore-mentioned particle size range, particle size distribution and specific surface area range. Moreover, the present invention relates to the pharmacokinetic and pharmacodynamic in vivo profiles of the resultant free base of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide after administration of the afore-mentioned crystalline N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide mono mesylate monohydrate salt to a subject in need thereof.


The invention relates to polynucleotides coding for the PPVO viral genome, to fragments of the polynucleotides coding for the PPVO genome and to polynucleotides coding for individual open reading frames (ORFs) of the PPVO viral genome. The invention also relates to recombinant proteins expressed from the above mentioned polynucleotides and to fragments of said recombinant proteins, and to the use of said recombinant proteins or fragments for the preparation of pharmaceutical compositions.


The present invention relates to a method for the detection of an altered therapeutic response of a subject infected by HCMV to a treatment with a 3,4 dihydroquinazoline or N-{3-[({4-[5-(6-aminopyridin-2-yl)-1,2,4-oxadiazol-3-yl]phenyl}sulfonyl)amino]-5-fluorophenyl}-1-cyanocyclopropanecarboxamide, a method for the detection of a drug resistance of a HCMV to a 3,4-dihydroquinazoline or N-{3-[({4-[5-(6-aminopyridin-2-yl)-1,2,4-oxadiazol-3-yl]phenyl}sulfonyl)amino]-5-fluorophenyl}-1-cyanocyclopropanecarboxamide, and to a method for the detection of a mutation of a HCMV resulting in a drug resistance to a 3,4-dihydroquinazoline or N-{3-[({4-[5-(6-aminopyridin-2-yl)-1,2,4-oxadiazol-3-yl]phenyl}sulfonyl)amino]-5-fluorophenyl}-1-cyanocyclopropanecarboxamide.


The present invention relates to an improved and shortened synthesis of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide and the mesylate monohydrate salt thereof by using boronic acid derivatives or borolane reagents while avoiding toxic organic tin compounds and to the mesylate monohydrate salt of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acet-amide which has demonstrated increased long term stability and release kinetics from pharmaceutical compositions.


The present invention relates to the crystalline mono mesylate monohydrate salt of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide in a definite particle size range, particle size distribution and a specific surface area range, which has demonstrated increased long term stability and release kinetics from pharmaceutical compositions, as well as to pharmaceutical compositions containing said crystalline N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide mono mesylate monohydrate having the afore-mentioned particle size range, particle size distribution and specific surface area range. Moreover, the present invention relates to the pharmacokinetic and pharmacodynamic in vivo profiles of the resultant free base of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide after administration of the afore-mentioned crystalline N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide mono mesylate monohydrate salt to a subject in need thereof.


The invention relates to polynucleotides coding for the PPVO viral genome, to fragments of the polynucleotides coding for the PPVO genome and to polynucleotides coding for individual open reading frames (ORFs) of the PPVO viral genome. The invention also relates to recombinant proteins expressed from the above mentioned polynucleotides and to fragments of said recombinant proteins, and to the use of said recombinant proteins or fragments for the preparation of pharmaceutical compositions.


The present invention relates to the use of helicase-primase inhibitors in a method of treating Alzheimers Disease (AD). Particularly, the present invention relates to the use of helicase-primase inhibitors in a method of treating AD in a subject that is having HSV-1 infection and is having AD or is having HSV-1 infection and is suspected of having AD. The provided antiviral helicase-primase inhibitors affect the accumulation of the key AD proteins amyloid beta and abnormally phosphorylated tau that occur during HSV-1 infection.


The present invention relates to an agent for the treatment and/or prophylaxis of an autoimmune disease, an agent for the formation of regulatory T cells (T_(Reg)) in an organism and various methods in which the agents according to the invention are used.


The present invention relates to the crystalline mono mesylate monohydrate salt of N-[5-(amino sulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide in a definite particle size range, particle size distribution and a specific surface area range, which has demonstrated increased long term stability and release kinetics from pharmaceutical compositions, as well as to pharmaceutical compositions containing said crystalline N-[5-(amino sulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide mono mesylate monohydrate having the afore-mentioned particle size range, particle size distribution and specific surface area range. Moreover, the present invention relates to the pharmacokinetic and pharmacodynamic in vivo profiles of the resultant free base of N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide after administration of the afore-mentioned crystalline N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]-acetamide mono mesylate monohydrate salt to a subject in need thereof.

Loading AiCuris GmbH and Co. KG collaborators
Loading AiCuris GmbH and Co. KG collaborators