Time filter

Source Type

Hayashi K.,Nagoya University | Hayashi K.,Kanazawa University | Ozaki N.,Kanazawa University | Kawakita K.,Meiji University of Integrative Medicine | And 8 more authors.
Journal of Pain | Year: 2011

Myofascial pain syndrome (MPS) is an important clinical condition characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). However, its pathogenic mechanism is still unclear. We developed an animal model relevant to conditions of MPS, and analyzed the mechanism of the muscle pain in this model. We applied eccentric contraction (EC) to a rat's gastrocnemius muscle (GM) for 2 weeks, and examined the mechanical withdrawal thresholds, histological changes, and expressions and contents of nerve growth factor (NGF). The mechanical withdrawal threshold decreased significantly at the next day of first EC and continued up to 9 days after EC. TBs were palpable at 3 to 8 days after initiation of EC. In EC animals, necrotic and regenerating muscle cells were found significantly more than in control animals. In EC animals, NGF expressions in regenerating muscle cells and NGF contents of GM were significantly higher than control animals. Administration of NGF receptor (TrkA) inhibitor K252a showed significant suppression of mechanical hyperalgesia in EC animals. Repeated EC induced persistent mechanical muscle hyperalgesia associated with TB. NGF expressed in regenerating muscle cells may have an important role in persistent mechanical muscle hyperalgesia which might be relevant to pathogenesis of MPS. Perspective: The present study shows that NGF expressed in regenerating muscle cells is involved in persistent muscular mechanical hyperalgesia. NGF-TrkA signaling in primary muscle afferent neurons may be one of the most important and promising targets for MPS. © 2011 by the American Pain Society. Source

Tsurusaki Y.,Yokohama City University | Okamoto N.,Osaka Medical Center and Research Institute for Maternal and Child Health | Ohashi H.,Saitama Childrens Medical Center | Kosho T.,Shinshu University | And 27 more authors.
Nature Genetics | Year: 2012

By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B. © 2012 Nature America, Inc. All rights reserved. Source

Abe Y.,Tohoku University | Aoki Y.,Tohoku University | Kuriyama S.,Tohoku University | Kawame H.,Ochanomizu University | And 8 more authors.
American Journal of Medical Genetics, Part A | Year: 2012

Costello syndrome and cardio-facio-cutaneous (CFC) syndrome are congenital anomaly syndromes characterized by a distinctive facial appearance, heart defects, and intellectual disability. Germline mutations in HRAS cause Costello syndrome, and mutations in KRAS, BRAF, and MAP2K1/2 (MEK1/2) cause CFC syndrome. Since the discovery of the causative genes, approximately 150 new patients with each syndrome have been reported. However, the clinico-epidemiological features of these disorders remain to be identified. In order to assess the prevalence, natural history, prognosis, and tumor incidence associated with these diseases, we conducted a nationwide prevalence study of patients with Costello and CFC syndromes in Japan. Based on the result of our survey, we estimated a total number of patients with either Costello syndrome or CFC syndrome in Japan of 99 (95% confidence interval, 77-120) and 157 (95% confidence interval, 86-229), respectively. The prevalences of Costello and CFC syndromes are estimated to be 1 in 1,290,000 and 1 in 810,000 individuals, respectively. An evaluation of 15 adult patients 18-32 years of age revealed that 12 had moderate to severe intellectual disability and most live at home without constant medical care. These results suggested that the number of adult patients is likely underestimated and our results represent a minimum prevalence. This is the first epidemiological study of Costello syndrome and CFC syndrome. Identifying patients older than 32 years of age and following up on the patients reported here is important to estimate the precise prevalence and the natural history of these disorders. © 2012 Wiley Periodicals, Inc. Source

Tsurusaki Y.,Yokohama City University | Okamoto N.,Osaka Medical Center and Research Institute for Maternal and Child Health | Ohashi H.,Saitama Childrens Medical Center | Mizuno S.,Aichi Human Service Center | And 14 more authors.
Clinical Genetics | Year: 2014

Coffin-Siris syndrome (CSS) is a congenital disorder characterized by intellectual disability, growth deficiency, microcephaly, coarse facial features, and hypoplastic or absent fifth fingernails and/or toenails. We previously reported that five genes are mutated in CSS, all of which encode subunits of the switch/sucrose non-fermenting (SWI/SNF) ATP-dependent chromatin-remodeling complex: SMARCB1, SMARCA4, SMARCE1, ARID1A, and ARID1B. In this study, we examined 49 newly recruited CSS-suspected patients, and re-examined three patients who did not show any mutations (using high-resolution melting analysis) in the previous study, by whole-exome sequencing or targeted resequencing. We found that SMARCB1, SMARCA4, or ARID1B were mutated in 20 patients. By examining available parental samples, we ascertained that 17 occurred de novo. All mutations in SMARCB1 and SMARCA4 were non-truncating (missense or in-frame deletion) whereas those in ARID1B were all truncating (nonsense or frameshift deletion/insertion) in this study as in our previous study. Our data further support that CSS is a SWI/SNF complex disorder. © 2013 John Wiley & Sons A/S. Source

Miyake N.,Yokohama City University | Mizuno S.,Aichi Human Service Center | Okamoto N.,Osaka Medical Center and Research Institute for Maternal and Child Health | Ohashi H.,Saitama Childrens Medical Center | And 7 more authors.
Human Mutation | Year: 2013

Kabuki syndrome (KS) is a rare congenital anomaly syndrome characterized by a unique facial appearance, growth retardation, skeletal abnormalities, and intellectual disability. In 2010, MLL2 was identified as a causative gene. On the basis of published reports, 55-80% of KS cases can be explained by MLL2 abnormalities. Recently, de novo deletion of KDM6A has been reported in three KS patients, but point mutations of KDM6A have never been found. In this study, we investigated KDM6A in 32 KS patients without an MLL2 mutation. We identified two nonsense mutations and one 3-bp deletion of KDM6A in three KS cases. This is the first report of KDM6A point mutations associated with KS. © 2012 Wiley Periodicals, Inc. Source

Discover hidden collaborations