Ahmadabad, India

Ahmedabad University

Ahmadabad, India

Ahmedabad University is a private university in Ahemedabad, Gujarat, India. It was established in July 2009. It is a self-financed, non-affiliated private university promoted by Ahmedabad Education Society . Wikipedia.

Time filter

Source Type

Gujarathi M.R.,Ahmedabad University
Issues in Accounting Education | Year: 2017

Diamond Foods is a comprehensive case that provides an opportunity for students to apply several financial auditing concepts and professional auditing standards to a real-world context. Diamond overstated its earnings of fiscal 2010 and 2011, by 38 percent and 47 percent, respectively, by delaying recognition of the cost of walnuts acquired to later accounting periods. The case requires students to determine whether Diamond’s external auditor—Deloitte & Touche, LLP (Deloitte)—fulfilled its responsibility to obtain reasonable assurance that the financial statements were free of material misstatement. Students need to determine whether Deloitte’s issuance of an unqualified opinion on Diamond’s financial statements and internal controls violated professional auditing standards. In addition, students are required to evaluate whether Deloitte obtained sufficient understanding of Diamond’s business and industry, exercised the needed professional skepticism, and used appropriate analytical procedures to discharge its professional responsibilities. The case presents an opportunity to achieve several learning objectives, including the development of research, critical-thinking, communication, and problem-solving skills. The case is appropriate for use in a graduate or undergraduate course in financial auditing. It can also be used in a fraud examination course, or in a capstone course in the accounting curriculum. © 2017, American Accounting Association. All rights reserved.

Kuchadiya B.B.,Ahmedabad University | Rathod P.P.,Government Engineering College
Energy Procedia | Year: 2017

Hydraulic behavior of plate fin heat exchanger with offset strip fin is investigated in this work. A lab scale set up of plate fin heat exchanger with offset strip fins is developed for the investigation. Hydraulic behavior of the considered heat exchanger is determined by conducting series of experiments. Mass flow rates of both the fluid, cold fluid inlet pressure and hot fluid inlet pressure are considered as input parameters. For different value of input parameter, value of friction factor and pressure drops are obtained. The correlations proposed by Maiti and Sarangi, Manglik and Bergles and Joshi and Webb are chosen as based correlations and values of pressure drop and friction factor obtained experimentally are compared. Finally, correlation for friction factor (f) is proposed to predict the pressure drop and friction factor. © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.

Dabhi V.K.,Dharmsinh Desai University | Chaudhary S.,Ahmedabad University
Natural Computing | Year: 2015

Empirical modeling, which is a process of developing a mathematical model of a system from experimental data, has attracted many researchers due to its wide applicability. Finding both the structure and appropriate numeric coefficients of the model is a real challenge. Genetic programming (GP) has been applied by many practitioners to solve this problem. However, there are a number of issues which require careful attention while applying GP to empirical modeling problems. We begin with highlighting the importance of these issues including: computational efforts in evolving a model, premature convergence, generalization ability of an evolved model, building hierarchical models, and constant creation techniques. We survey and classify different approaches used by GP researchers to deal with the mentioned issues. We present different performance measures which are useful to report the results of analysis of GP runs. We hope this work would help the reader by facilitating to understand key concepts and practical issues of GP and steering in selection of an appropriate approach to solve a particular issue effectively. © 2014, Springer Science+Business Media Dordrecht.

Magdolenova Z.,Norwegian Institute For Air Research | Collins A.,University of Oslo | Kumar A.,Ahmedabad University | Dhawan A.,Ahmedabad University | And 3 more authors.
Nanotoxicology | Year: 2014

Engineered nanoparticles (NPs) are widely used in different technologies but their unique properties might also cause adverse health effects. In reviewing recent in vitro and in vivo genotoxicity studies we discuss potential mechanisms of genotoxicity induced by NPs. Various factors that may influence genotoxic response, including physico-chemical properties and experimental conditions, are highlighted. From 4346 articles on NP toxicity, 112 describe genotoxicity studies (94 in vitro, 22 in vivo). The most used assays are the comet assay (58 in vitro, 9 in vivo), the micronucleus assay (31 in vitro, 14 in vivo), the chromosome aberrations test (10 in vitro, 1 in vivo) and the bacterial reverse mutation assay (13 studies). We describe advantages and potential problems with different methods and suggest the need for appropriate methodologies to be used for investigation of genotoxic effects of NPs, in vitro and in vivo. © 2014 Informa UK, Ltd.

Sharma V.,Indian Institute of Toxicology Research | Sharma V.,University of Bradford | Sharma V.,University of North Carolina at Chapel Hill | Anderson D.,University of Bradford | And 2 more authors.
Apoptosis | Year: 2012

The wide scale use of Zinc oxide (ZnO) nanoparticles in the world consumer market makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. The liver, which is the primary organ of metabolism, might act as a major target organ for ZnO nanoparticles after they gain entry into the body through any of the possible routes. Therefore, the aim of the present study was to assess the apoptotic and genotoxic potential of ZnO nanoparticles in human liver cells (HepG2) and the underlying molecular mechanism of its cellular toxicity. The role of dissolution in the toxicity of ZnO nanoparticles was also investigated. Our results demonstrate that HepG2 cells exposed to 14-20 lg/ml ZnO nanoparticles for 12 h showed a decrease in cell viability and the mode of cell death induced by ZnO nanoparticles was apoptosis. They also induced DNA damage which was mediated by oxidative stress as evidenced by an increase in Fpg sensitive sites. Reactive oxygen species triggered a decrease in mitochondria membrane potential and an increase in the ratio of Bax/ Bcl2 leading to mitochondria mediated pathway involved in apoptosis. In addition, ZnO nanoparticles activated JNK, p38 and induced p53Ser15 phosphorylation. However, apoptosis was found to be independent of JNK and p38 pathways. This study investigating the effects of ZnO nanoparticles in human liver cells has provided valuable insights into the mechanism of toxicity induced by ZnO nanoparticles. © Springer Science+Business Media, LLC 2012.

Kumar A.,Ahmedabad University | Dhawan A.,Ahmedabad University | Dhawan A.,Indian Institute of Toxicology Research
Archives of Toxicology | Year: 2013

Nanoscience and nanotechnology have seen an exponential growth over the past decade largely due to the unique properties of engineered nanoparticles (ENPs), advances in ENP synthesis, and imaging or analysis tools. The unique properties such as high surface area to volume ratio, abundant reactive sites on the surface, large fraction of atoms located on the exterior face have made these novel materials the most sought after for consumer and industrial applications. This significant increase in the ENP containing consumer products has also enhanced the chances of human and environmental exposure. Humans get exposed to ENPs at various steps of its synthesis (laboratory), manufacture (industry), use (consumer products, devices, medicines, etc.) and through the environment (contaminated water, aerosolized particles, and disposal). Such exposures to ENPs are known to induce genotoxicity, cytotoxicity, and carcinogenicity in biological system. This is attributed to several factors, such as direct interaction of ENPs with the genetic material, indirect damage due to reactive oxygen species generation, release of toxic ions from soluble ENPs, interaction with cytoplasmic/nuclear proteins, binding with mitotic spindle or its components, increased oxidative stress, disturbance of cell cycle checkpoint functions, inhibition of antioxidant defense, and many others. The present review describes an overview of in vitro and in vivo genotoxicity studies with ENPs, advantages and potential problems associated with the methods used in genotoxicity assessment, and the need for appropriate method and approach for risk assessment of ENPs. © 2013 Springer-Verlag Berlin Heidelberg.

Singh S.,Ahmedabad University
BioImpacts | Year: 2013

Gene therapy has been recently shown as a promising tool for cancer treatment as nanotechnology-based safe and effective delivery methods are developed. Generally, genes are wrapped up in extremely tiny nanoparticles which could be taken up easily by cancer cells, not to their healthy neighboring cells. Several nanoparticle systems have been investigated primarily to address the problems involved in other methods of gene delivery and observed improved anticancer efficacy suggesting that nanomedicine provides novel opportunities to safely deliver genes, thus treat cancer. In this review, various nanoparticle types and related strategies, used in gene delivery for cancer treatment, have been discussed. © 2013 by Tabriz University of Medical Sciences.

Singh R.,Ahmedabad University | Singh S.,Ahmedabad University
Colloids and Surfaces B: Biointerfaces | Year: 2015

Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. © 2015 Elsevier B.V.

Sharma R.,Ahmedabad University
International Journal of Power Electronics and Drive Systems | Year: 2013

In this paper, a new soft switched cell that overcomes most of the drawbacks of the normal "hard switched-pulse width modulation" converter is proposed to contrive a new family of soft switched PWM converters. All of the semiconductor devices in this converter are turned on and off under exact or near zero voltage switching (ZVS) and/or zero current switching (ZCS). No additional voltage and current stresses on the main switch and main diode occur. A push-pull converter equipped with the proposed snubber cell is analyzed in detail. The predicted operation principles and theoretical analysis of the presented converter are verified with a prototype of a 50W PWM push-pull multi-output converter with insulated MOSFET and for regulation of slave outputs magnetic amplifier post regulators are considered as post regulators. Moreover; this multioutput converter has a simple structure, low cost, and ease of control circuitry. © 2013 Institute of Advanced Engineering and Science. All rights reserved.

Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: NMP-2010-1.3-1 | Award Amount: 13.15M | Year: 2011

The growing development, production and use of engineered nanomaterials and associated products will increase exposure of both humans and ecosystems to these new materials. However, current knowledge is still incomplete and established test methods are as yet inappropriate to reliably assess the extent of exposure and risk of materials at the nano-scale. There is an urgent need to develop methods to overcome the current limitations of existing hazard and risk assessment schemes and to generate the body of reference data needed as the basis for regulative requirements and for measures to safeguard production, application and the disposal of nanomaterials. The proposed project will mobilize the critical mass of international scientific knowledge and technical expertise required to address these questions. Current analytical and toxicity test methods and models will be put to test and subjected to rigorous intercalibration and validation. Where necessary, methods and test materials will be modified, adapted and validated, and new reliable reference methods developed, in cooperation with international standardisation bodies and the concerned industry, to support both pre and co-normative activities and to make the applicability of existing RA and LCA schemes to ENPs more reliable. The feasibility of validated measurement, characterization and test methods will be assessed by selected case studies to help the significant improvement of the performance of existing exposure monitoring systems as well as the development of new risk management and reduction strategies.

Loading Ahmedabad University collaborators
Loading Ahmedabad University collaborators