Time filter

Source Type

Hayashida M.,Kavli Institute for Particle Astrophysics and Cosmology | Hayashida M.,Kyoto University | Madejski G.M.,Kavli Institute for Particle Astrophysics and Cosmology | Nalewajko K.,University of Colorado at Boulder | And 103 more authors.
Astrophysical Journal | Year: 2012

We present time-resolved broadband observations of the quasar 3C279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the γ-ray emission by about 10days. X-ray observations reveal a pair of "isolated" flares separated by 90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the γ-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the γ-ray flaring event by a shift of its location from 1pc to 4pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission. © 2012. The American Astronomical Society. All rights reserved..


Arlot J.-E.,French National Center for Scientific Research | Emelyanov N.V.,French National Center for Scientific Research | Emelyanov N.V.,13 Universitetskij Prospect | Lainey V.,French National Center for Scientific Research | And 32 more authors.
Astronomy and Astrophysics | Year: 2012

Context. The photometry of mutual occultations and eclipses of natural planetary satellites can be used to infer very accurate astrometric data. This can be achieved by processing the light curves of the satellites observed during international campaigns of photometric observations of these mutual events. Aims. This work focuses on processing the complete database of photometric observations of the mutual occultations and eclipses of the Saturnian satellites made during the international campaign in 2009. The final goal is to derive new accurate astrometric data. Methods. We develop an accurate photometric model of mutual event observations of sufficiently high accuracy. Our original method is applied to derive astrometric data from photometric observations of the mutual occultations and eclipses of the Saturnian satellites. Results. We process the 26 light curves obtained during the international campaign of photometric observations of the Saturnian satellites in 2009. Compared with the theory TASS 1.7 by Vienne and Duriez, we find that the root mean square of the "O-C" residuals for the 23 highest quality observations are equal to 48.5 and 21.7 mas in right ascension and declination, respectively, we obtain 16.4 and 20.7 mas with the new theory by Lainey and collaborators and 17.3 and 21.6 mas with JPL SAT351 ephemerides. Topocentric or heliocentric angular differences for satellites pairs are obtained for 16 time instants during the time period from December 19, 2008 to July 16, 2009. © ESO, 2012.


Raiteri C.M.,National institute for astrophysics | Villata M.,National institute for astrophysics | Smith P.S.,University of Arizona | Larionov V.M.,Saint Petersburg State University | And 86 more authors.
Astronomy and Astrophysics | Year: 2012

Context. After years of modest optical activity, the quasar-type blazar 4C 38.41 (B3 1633+382) experienced a large outburst in 2011, which was detected throughout the entire electromagnetic spectrum, renewing interest in this source. Aims. We present the results of low-energy multifrequency monitoring by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) consortium and collaborators, as well as those of spectropolarimetric/ spectrophotometric monitoring at the Steward Observatory. We also analyse high-energy observations of the Swift and Fermi satellites. This combined study aims to provide insights into the source broad-band emission and variability properties. Methods. We assemble optical, near-infrared, millimetre, and radio light curves and investigate their features and correlations. In the optical, we also analyse the spectroscopic and polarimetric properties of the source. We then compare the low-energy emission behaviour with that at high energies. Results. In the optical-UV band, several results indicate that there is a contribution from a quasi-stellar-object (QSO) like emission component, in addition to both variable and polarised jet emission. In the optical, the source is redder-when-brighter, at least for R a3; 16. The optical spectra display broad emission lines, whose flux is constant in time. The observed degree of polarisation increases with flux and is higher in the red than the blue. The spectral energy distribution reveals a bump peaking around the U band. The unpolarised emission component is likely thermal radiation from the accretion disc that dilutes the jet polarisation. We estimate its brightness to be R QSO ∼ 17.85-18 and derive the intrinsic jet polarisation degree. We find no clear correlation between the optical and radio light curves, while the correlation between the optical and γ-ray flux apparently fades in time, likely because of an increasing optical to γ-ray flux ratio. Conclusions. As suggested for other blazars, the long-term variability of 4C 38.41 can be interpreted in terms of an inhomogeneous bent jet, where different emitting regions can change their alignment with respect to the line of sight, leading to variations in the Doppler factor δ. Under the hypothesis that in the period 2008-2011 all the γ-ray and optical variability on a one-week timescale were due to changes in δ, this would range between ∼7 and ∼21. If the variability were caused by changes in the viewing angle θ only, then θ would go from ∼2.6° to ∼5°. Variations in the viewing angle would also account for the dependence of the polarisation degree on the source brightness in the framework of a shock-in-jet model. © 2012 ESO.


Bhatta G.,Florida International University | Webb J.R.,Florida International University | Hollingsworth H.,Florida International University | Dhalla S.,Florida International University | And 44 more authors.
Astronomy and Astrophysics | Year: 2013

Context. The international Whole Earth Blazar Telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716 + 714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 mag range. The resulting light curve is presented here for the first time. Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model. © ESO, 2013.


Raiteri C.M.,National institute for astrophysics | Villata M.,National institute for astrophysics | Aller M.F.,University of Michigan | Gurwell M.A.,Harvard - Smithsonian Center for Astrophysics | And 74 more authors.
Astronomy and Astrophysics | Year: 2011

Context. The blazar 3C 454.3 is one of the most active sources from the radio to the γ-ray frequencies observed in the past few years. Aims. We present multiwavelength observations of this source from April 2008 to March 2010. The radio to optical data are mostly from the GASP-WEBT, UV and X-ray data from Swift, and γ-ray data from the AGILE and Fermi satellites. The aim is to understand the connection among emissions at different frequencies and to derive information on the emitting jet. Methods. Light curves in 18 bands were carefully assembled to study flux variability correlations. We improved the calibration of optical-UV data from the UVOT and OM instruments and estimated the Lyα flux to disentangle the contributions from different components in this spectral region. Results. The observations reveal prominent variability above 8 GHz. In the optical-UV band, the variability amplitude decreases with increasing frequency due to a steadier radiation from both a broad line region and an accretion disc. The optical flux reaches nearly the same levels in the 2008-2009 and 2009-2010 observing seasons; the mm one shows similar behaviour, whereas the γ and X-ray flux levels rise in the second period. Two prominent γ-ray flares in mid 2008 and late 2009 show a double-peaked structure, with a variable γ/optical flux ratio. The X-ray flux variations seem to follow the γ-ray and optical ones by about 0.5 and 1 d, respectively. Conclusions. We interpret the multifrequency behaviour in terms of an inhomogeneous curved jet, where synchrotron radiation of increasing wavelength is produced in progressively outer and wider jet regions, which can change their orientation in time. In particular, we assume that the long-term variability is due to this geometrical effect. By combining the optical and mm light curves to fit the γ and X-ray ones, we find that the γ (X-ray) emission may be explained by inverse-Comptonisation of synchrotron optical (IR) photons by their parent relativistic electrons (SSC process). A slight, variable misalignment between the synchrotron and Comptonisation zones would explain the increased γ and X-ray flux levels in 2009-2010, as well as the change in the γ/optical flux ratio during the outbursts peaks. The time delays of the X-ray flux changes after the γ, and optical ones are consistent with the proposed scenario. © 2011 ESO.


Raiteri C.M.,National institute for astrophysics | Villata M.,National institute for astrophysics | D'Ammando F.,University of Perugia | D'Ammando F.,National institute for astrophysics | And 86 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2013

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at γ-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily γ-ray observations by Fermi. Discrete correlation analysis between the optical and γ-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding γ-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and γ-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.


Schinzel F.K.,Max Planck Institute for Radio Astronomy | Sokolovsky K.V.,Max Planck Institute for Radio Astronomy | Sokolovsky K.V.,RAS Lebedev Physical Institute | D'Ammando F.,Istituto di Astrofisica Spaziale e Fisica Cosmica | And 38 more authors.
Astronomy and Astrophysics | Year: 2011

For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991-2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at γ-ray energies ≥20 MeV. Recently a bright γ-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO512, B3 1640+396) were combined with 20 months of Fermi-LAT monitoring data (August 2008-April 2010) to associate and identify the dominating γ-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this γ-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO512 started to contribute and thereafter was detected with increasing γ-ray activity, possibly adding flux to 1FGL J1642.5+3947. For the same time period and during the summer of 2010, an increase of radio, optical and X-ray activity of NRAO512 was observed. No γ-ray emission from B3 1640+396 was detected. © 2011 ESO.


Raiteri C.M.,National institute for astrophysics | Villata M.,National institute for astrophysics | Bruschini L.,University of Turin | Capetti A.,National institute for astrophysics | And 53 more authors.
Astronomy and Astrophysics | Year: 2010

Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with relatedinverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the whole earth blazar telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (∼4-7%) flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability. Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen, with strong consequences on the source multiwavelength behaviour. © 2010 ESO.


Christou A.A.,Armagh Observatory | Beisker W.,International Occultation Timing Association | Casas R.,International Occultation Timing Association | Casas R.,Institute Of Ciencies Of L Espai Ieec Csic | And 18 more authors.
Astronomy and Astrophysics | Year: 2013

Aims. Occultations of bright stars by planets provide information on the state of their atmospheres. An occultation of the bright star 45 Capricornii (HIP 107302) by Jupiter occurred on the night of 3/4 August 2009. Methods. The event was observed at multiple sites in Europe, Africa and South America and with instruments ranging in aperture from 0.4 m to 2.2 m. All observations, except one, were carried out in methane absorption bands centred at 0.89 μm and 2.2 μm to minimise the planetary contribution to the measured stellar flux. Following the application of special post-processing techniques, differential photometry was performed. Nearby bright satellites were used as reference sources. Results. Fifteen lightcurves were obtained. The photometric time series for fourteen of these were fitted to a model atmosphere of constant scale height (H). Estimates of H for most lightcurves lie within the range 20-30 km with an inverse-variance weighted mean of 23.6 ± 0.4 km, in good agreement with previous works. A comparison between half-light times at ingress and at egress implies an astrometric offset of 10-15 mas in Jupiter's position relative to the star. Five lightcurves - two for ingress and three for egress - were numerically inverted into profiles of pressure versus temperature. Isothermal, mutually consistent behaviour is observed within the pressure range 3-10 μbar. The inferred temperature of 165 ± 5 K is consistent with, but slightly higher than, that measured by the Galileo Probe at 5 S latitude in 1995 at the same pressure level. Subtraction of isothermal models for nine cases show the presence of at least one, and possibly two, non-isothermal layers a few tens of km below the half-light datum. Their altitudes are similar to those of features previously reported during the occultation of HIP 9369 in 1999. Our temperature estimates are consistent with the expected small magnitude of the perturbation of the atmosphere following the impact event on Jupiter in July 2009. © ESO, 2013.

Loading Agrupacio Astronomica de Sabadell collaborators
Loading Agrupacio Astronomica de Sabadell collaborators