Time filter

Source Type

Perera P.I.P.,Agrobiodiversity Research Area | Quintero M.,Agrobiodiversity Research Area | Dedicova B.,Biotechnology Unit | Kularatne J.D.J.S.,Decision and Policy Analysis Research Area | Ceballos H.,Agrobiodiversity Research Area
AoB PLANTS | Year: 2013

Background and aims: Cassava (Manihot esculenta), a major food staple in the tropics and subtropics, thrives even in environments undergoing threatening climate change. To satisfy the increasing demand for crop improvement and overcome the limitations of conventional breeding, the introduction of inbreeding techniques such as the production of doubled haploid lines via androgenesis or gynogenesis offers advantages. However, comprehensive studies on cassava flower bud biology or structural development are lacking and precise structural and biological information is a prerequisite to enhance the efficiency of these techniques. Methodology: The floral biology of three selected cassava lines was studied, focusing on morphology, phenology and pollen biology (quantity, viability and dimorphism). Histological studies were also conducted on microsporogenesis/microgametogenesis and megasporogenesis/ megagametogenesis to generate precise developmental data for these lines. Principal results: Male and female cyathia have distinct developmental phases. Pollen viability was high during immature stages of plant development; however, pollen mortality was common at later stages. Pollen trimorphism in male gametophytes towards the larger or smaller pollen size, as compared with normal size, was observed. Ten characteristic events were identified in male gametogenesis and six in female gametogenesis that were correlated with flower bud diameter. Male gametophyte diameter at different developmental stages was also determined. Conclusions: Results indicate that the three lines did not differ significantly, except regarding a few morphological aspects such as plant height, flower colour and number of male cyathia. Pollen grains were initially viable, but viability decreased drastically at later stages of growth. Abnormal meiosis or mitosis triggered pollen trimorphism. The demonstrated sequential events of reproductive development generated valuable information at the cellular level, which will help close the current information gap for cassava improvement via breeding programmes and doubled haploid plant production. © 2013 The Authors.

Duitama J.,Agrobiodiversity research area | Quintero J.C.,Agrobiodiversity research area | Cruz D.F.,Agrobiodiversity research area | Quintero C.,Agrobiodiversity research area | And 5 more authors.
Nucleic Acids Research | Year: 2014

Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species. © The Author(s) 2013. Published by Oxford University Press.

PubMed | University of Pretoria, Ghent University and Agrobiodiversity Research Area
Type: Journal Article | Journal: Nucleic acids research | Year: 2016

Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/.

Duitama J.,Catholic University of Leuven | Duitama J.,Agrobiodiversity Research Area | Zablotskaya A.,Center for the Biology of Disease | Zablotskaya A.,Catholic University of Leuven | And 9 more authors.
Nucleic Acids Research | Year: 2014

Tandem repeats are short DNA sequences that are repeated head-to-tail with a propensity to be variable. They constitute a significant proportion of the human genome, also occurring within coding and regulatory regions. Variation in these repeats can alter the function and/or expression of genes allowing organisms to swiftly adapt to novel environments. Importantly, some repeat expansions have also been linked to certain neurodegenerative diseases. Therefore, accurate sequencing of tandem repeats could contribute to our understanding of common phenotypic variability and might uncover missing genetic factors in idiopathic clinical conditions. However, despite long-standing evidence for the functional role of repeats, they are largely ignored because of technical limitations in sequencing, mapping and typing. Here, we report on a novel capture technique and data filtering protocol that allowed simultaneous sequencing of thousands of tandem repeats in the human genomes of a three generation family using GS-FLX-plus Titanium technology. Our results demonstrated that up to 7.6% of tandem repeats in this family (4% in coding sequences) differ from the reference sequence, and identified a de novo variation in the family tree. The method opens new routes to look at this underappreciated type of genetic variability, including the identification of novel disease-related repeats. © 2014 The Author(s) 2014.

Heffelfinger C.,Yale University | Fragoso C.A.,Yale University | Moreno M.A.,Yale University | Overton J.D.,Yale University | And 5 more authors.
BMC Genomics | Year: 2014

Background: Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. Results: A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F2 population resulting from a B73 × Country Gentleman test cross. Conclusions: This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation. © 2015 Heffelfinger et al.. licensee BioMed Central Ltd.

Carvajal-Yepes M.,Agrobiodiversity Research Area | Olaya C.,Agrobiodiversity Research Area | Lozano I.,Agrobiodiversity Research Area | Cuervo M.,International Center for Tropical Agriculture | And 2 more authors.
Virus Research | Year: 2014

In the Americas, different disease symptoms have been reported in cassava including leaf mosaics, vein clearings, mottles, ring spots, leaf distortions and undeveloped and deformed storage roots. Some viruses have been identified and associated with these symptoms while others have been reported in symptomless plants or latent infections. We observed that reoviruses associated with severe root symptoms (RS) of Cassava Frogskin Disease (CFSD) are not associated with leaf symptoms (LS) observed in the cassava indicator plant 'Secundina'. Neither were these LS associated with the previously characterized Cassava common mosaic virus, Cassava virus X, Cassava vein mosaic virus or phytoplasma, suggesting the presence of additional pathogens. In order to explain LS observed in cassava we used a combination of biological, serological and molecular tests. Here, we report three newly described viruses belonging to the families Secoviridae, Alphaflexiviridae and Luteoviridae found in cassava plants showing severe RS associated with CFSD. All tested plants were infected by a mix of viruses that induced distinct LS in 'Secundina'. Out of the three newly described viruses, a member of family Secoviridae could experimentally induce LS in single infection. Our results confirm the common occurrence of complex viral infections in cassava field-collected since the 1980s. © 2013 Elsevier B.V.

Pais T.M.,Catholic University of Leuven | Foulquie-Moreno M.R.,Catholic University of Leuven | Hubmann G.,Catholic University of Leuven | Duitama J.,Agrobiodiversity Research Area | And 5 more authors.
PLoS Genetics | Year: 2013

The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. © 2013 Pais et al.

Perera P.I.P.,Agrobiodiversity Research Area | Ordonez C.A.,Agrobiodiversity Research Area | Lopez-Lavalle L.A.B.,Agrobiodiversity Research Area | Dedicova B.,Agrobiodiversity Research Area
Protoplasma | Year: 2014

This study was aimed at inducing androgenesis in cultured anthers of cassava (Manihot esculenta Crantz) to develop a protocol for the production of doubled haploids. Microspore reprogramming was induced in cassava by cold or heat stress of anthers. Since the anthers contain both haploid microspores and diploid somatic cells, it was essential to verify the origin of anther-derived calli. The origin of anther-derived calli was assessed by morphological screening followed by histological analysis and flow cytometry (FCM). Additionally, simple sequence repeat (SSR) and amplified fragmented length polymorphism (AFLP) assays were used for the molecular identification of the microspore-derived calli. The study clearly demonstrated the feasibility of producing microspore-derived calli using heat- or cold-pretreated anthers. Histological studies revealed reprogramming of the developmental pathway of microspores by symmetrical division of the nucleus. Flow cytometry analysis revealed different ploidy level cell types including haploids, which confirmed their origin from the microspores. The SSR and AFLP marker assays independently confirmed the histological and FCM results of a haploid origin of the calli at the DNA level. The presence of multicellular microspores in the in vitro system indicated a switch of developmental program, which constitutes a crucial step in the design of protocols for the regeneration of microspore-derived embryos and plants. This is the first detailed report of calli, embryos, and abnormal shoots originated from the haploid cells in cassava, leading to the development of a protocol for the production of doubled haploid plants in cassava. © 2013 The Author(s).

Hubmann G.,Catholic University of Leuven | Mathe L.,Catholic University of Leuven | Foulquie-Moreno M.R.,Catholic University of Leuven | Duitama J.,Agrobiodiversity Research Area | And 2 more authors.
Biotechnology for Biofuels | Year: 2013

Background: Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1 E330N.K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results: We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1 E330N.K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1 R110Q,P269Q, hot1 P107S,H274Y and gpd1 L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1 L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1 L164P > hot1 P107S,H274Y ≥ smp1 R110Q,P269Q. Conclusions: Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. © 2013 Hubmann et al.; licensee BioMed Central Ltd.

PubMed | National University of Colombia, Agrobiodiversity Research Area and International Potato Center
Type: Review | Journal: In vitro cellular & developmental biology. Plant : journal of the Tissue Culture Association | Year: 2016

The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.

Loading Agrobiodiversity research area collaborators
Loading Agrobiodiversity research area collaborators