Time filter

Source Type

Beltsville, MD, United States

Pelletier M.G.,Agricultural Research Services | Viera J.A.,Microsemi
Sensors | Year: 2010

In order to improve rapid on-line moisture sensing of seedcotton in cotton gins, a means by which to establish a reliable low-cost wide-band electronic calibration is critically needed. This calibration is needed to center the circuit due to changes in the internal signal delays and attenuation drift caused by temperature changes in the various system components and circuit elements. This research examines a hardware technique for use in conjunction with microwave reflective sensing probes having an extended bandwidth from 500 MHz through 2.5 GHz. This new technique was validated experimentally against known electrical propagation delay standards. Results of the measured propagation delay with this type of automatic electronic calibration method was found to agree with results using a vector network analyzer with a traditional S11 single port error correction calibration methodology to within 4% of the measurement, 95% confidence, with a standard error of +/-2212;18.6 ps for the delay measurements. At this level of performance, the proposed low-cost technique exhibits superior performance, over the typical geosciences time-domain reflectometer "TDR", instruments in common use in soil moisture testing and is suitable for use in cotton gin moisture sensing. © 2010 by the authors.

Boddicker N.J.,Iowa State University | Bjorkquist A.,Iowa State University | Rowland R.R.,Kansas State University | Lunney J.K.,Agricultural Research Services | And 2 more authors.
Genetics Selection Evolution | Year: 2014

Background: Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ∼200 pigs from different commercial crosses were used to address these objectives. Results: Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09). Conclusions: Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease. © 2014 Boddicker et al.; licensee BioMed Central Ltd.

Boddicker N.J.,Iowa State University | Garrick D.J.,Iowa State University | Garrick D.J.,Massey University | Rowland R.R.R.,Kansas State University | And 3 more authors.
Animal Genetics | Year: 2014

Infectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of log-transformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic variance for VL and 11 percent for WG. The effect of the favorable minor allele at SNP WUR10000125 was dominant. Ordered genotypes for SNP WUR10000125 showed that the effect was present irrespective of whether the favorable allele was paternally or maternally inherited. These results demonstrate that selection for host response to PRRS virus infection could reduce the economic impact of PRRS. © 2013 Stichting International Foundation for Animal Genetics.

Truong A.D.,Chung - Ang University | Hong Y.H.,Chung - Ang University | Lillehoj H.S.,Agricultural Research Services
Veterinary Immunology and Immunopathology | Year: 2015

We investigated the necrotic enteritis (NE)-induced transcripts of immune-related genes in the intestinal mucosa of two highly inbred White Leghorn chicken lines, line 6.3 and line 7.2, which share the same MHC haplotype and show different levels of NE susceptibility using high-throughput RNA sequencing (RNA-Seq) technology. NE was induced by the previously described co-infection model using Eimeria maxima and Clostridium perfringens. The RNA-Seq generated over 38 million sequence reads for Marek's disease (MD)-resistant line 6.3 and over 40 million reads for the MD-susceptible line 7.2. Alignment of these sequences with the Gallus gallus genome database revealed the expression of over 29,900 gene transcripts induced by NE in these two lines, among which 7,841 genes were significantly upregulated and 2,919 genes were downregulated in line 6.3 chickens and 6,043 genes were significantly upregulated and 2,764 genes were downregulated in NE-induced line 7.2 compared with their uninfected controls. Analysis of 560 differentially expressed genes (DEGs) using the gene ontology database revealed annotations for 246 biological processes, 215 molecular functions, and 81 cellular components. Among the 53 cytokines and 96 cytokine receptors, 15 cytokines and 29 cytokine receptors were highly expressed in line 6.3, whereas the expression of 15 cytokines and 15 cytokine receptors was higher in line 7.2 than in line 6.3 (fold change. ≥. 2, p<. 0.01). In a hierarchical cluster analysis of novel mRNAs, the novel mRNA transcriptome showed higher expression in line 6.3 than in line 7.2, which is consistent with the expression profile of immune-related target genes.In qRT-PCR and RNA-Seq analysis, all the genes examined showed similar responses to NE (correlation coefficient R=. 0.85-0.89, p<. 0.01) in both lines 6.3 and 7.2. This study is the first report describing NE-induced DEGs and novel transcriptomes using RNA-seq data from two inbred chicken lines showing different levels of NE susceptibility. These findings provide important insights into our current knowledge of host-pathogen interaction and the nature of host genes that can serve as NE resistance markers for molecular breeding. © 2015 Elsevier B.V.

Chang H.-X.,Urbana University | Miller L.A.,Urbana University | Hartman G.L.,Urbana University | Hartman G.L.,Agricultural Research Services
Phytopathology | Year: 2014

Appressoria of some plant-pathogenic fungi accumulate turgor pressure that produces a mechanical force enabling the direct penetration of hyphae through the epidermis. Melanin functions as an impermeable barrier to osmolytes, which allows appressoria to accumulate high turgor pressure. Deficiency of melanin in appressoria reduces turgor pressure and compromises the infection process. In Phakopsora pachyrhizi, the soybean rust pathogen, the appressoria are hyaline. Our objective was to ensure the absence of a melanin layer specifically between the appressorial cell wall and plasma membrane, as well as to determine the turgor pressure of P. pachyrhizi appressoria. We demonstrated that two melanin biosynthesis inhibitors neither reduced turgor pressure nor compromised the infection process. Transmission electron microscopy also showed the absence of a melanin layer between the appressorial cell wall and plasma membrane. In addition, the turgor pressure of P. pachyrhizi appressoria was 5 to 6 MPa, based on extracellular osmolytes used to simulate different osmotic pressures. This is the first report showing that turgor pressure accumulation of P. pachyrhizi appressoria was independent of melanin.

Discover hidden collaborations