Time filter

Source Type

Manangkil O.E.,Philippine Rice Research Institute | Vu H.T.T.,Agricultural and Genetics Institute | Mori N.,Kobe University | Yoshida S.,Hyogo Institute of Agriculture | Nakamura C.,Kobe University
Euphytica | Year: 2013

Submergence-induced suppression of seedling vigor is a serious constraint particularly in the direct seeding rice cultivation system. To identify quantitative trait loci (QTLs) associated with seedling vigor in rice under submergence, a mapping population of 98 Backcross Inbred Lines derived from a cross of Nipponbare/Kasalath//Nipponbare was used. Phenotypic evaluation of seedling vigor under submergence was based on shoot length (SHL), root length (RTL) and shoot fresh weight (SFW) using a test tube bioassay method. Thirty-two putative QTLs were detected among which 7 were for SHL, 11 for RTL and 14 for SFW. Phenotypic evaluation was also made of the parental lines and a set of 54 chromosome segment substitution lines in which Nipponbare segments were substituted for by their homologous Kasalath segments covering the entire rice genome. Two QTLs with more than 10 % contribution to the total phenotypic variance were verified for SHL, and at least one for RTL and six for SFW on chromosomes 1, 3, 4, 6 and 7 at the 1 % significance level. Among these, all but two showed reductions in one, two or all three traits. Our present and previous results suggest that the Nipponbare genome has a potential to improve seedling vigor under submergence and that japonica germplasms can be used to breed for this important trait in indica rice. © 2012 Springer Science+Business Media Dordrecht.

Loading Agricultural and Genetics Institute collaborators
Loading Agricultural and Genetics Institute collaborators