Time filter

Source Type

Ochwo-Ssemakula M.,Makerere University | Sengooba T.,International Food Policy Research Institute | Hakiza J.J.,National Agricultural Research Laboratories | Adipala E.,Regional Universities Forum for Capacity Building in Agriculture | And 5 more authors.
Plant Disease | Year: 2012

This article describes the incidence and etiology of a viral disease of passion fruit in Uganda. Symptoms, including those characteristic of passion fruit woodiness disease (PWD), were observed on 32% of plants in producing areas. Electron microscopic observations of infected tissues revealed flexuous filaments of ca. 780 nm. Enzymelinked immunosorbent assays indicated a serological relationship with Cowpea aphid-borne mosaic virus (CABMV) and Passion fruit ringspot virus (PFRSV). In host range studies, only species in the families Solanaceae and Chenopodiaceae were susceptible, and neither Vigna unguiculata nor Phaseolus vulgaris became infected. Coat protein (CP) gene sequences of eight isolates exhibited features typical of potyviruses and were highly similar (88 to 100% identity). However, the sequences had limited sequence identity with CP genes of two of the three potyviruses reported to cause PWD: East Asian Passiflora virus and Passion fruit woodiness virus (PWV). Deduced amino acid sequences for the CP of isolates from Uganda had highest identity with Bean common mosaic necrosis virus (BCMNV) (72 to 79%, with evolutionary divergence values between 0.17 and 0.19) and CABMV (73 to 76%, with divergence values between 0.21 and 0.25). Based on these results and in accordance with International Committee for Taxonomy of Viruses criteria for species demarcation in the family Potyviridae, we conclude that a previously unreported virus causes viral diseases on passion fruit in Uganda. The name "Ugandan Passiflora virus" is proposed for this virus. © 2012 The American Phytopathological Society.

Adriko J.,Copenhagen University | Adriko J.,National Agricultural Biotechnology Center | Adriko J.,National Banana Research Programme | Mbega E.R.,Copenhagen University | And 6 more authors.
European Journal of Plant Pathology | Year: 2014

A PCR-based system was developed to reliably and robustly identify group I and II members of the genus Xanthomonas. Primer sets developed from three gene targets namely fyuA, ITS and gumD were evaluated in the study. Primer sets were evaluated using DNA extracted from 45 Xanthomonas strains representing 25 species broadly covering the genus. Fifteen non-Xanthomonas strains of plant-associated bacteria including phylogenetically closely related species Stenotrophomonas maltophilia and Xylella fastidiosa were also tested. The primers targeting fyuA amplified DNA from all xanthomonads except X. theicola, while the ITS primers amplified a DNA fragment of 254 bp in all 45 Xanthomonas strains; whereas no amplification was observed for non-xanthomonads. The gumD primers allowed efficient amplification of DNA in 38 out of 39 isolates from Group II, whereas no or very weak amplification occurred with DNA from Group I members. Internal controls of primers targeting bacterial 16S rDNA or plant 26S mitochondrial rDNA were successfully applied in multiplex PCRs for testing bacterial cultures or plant tissue, respectively. The findings give us a PCR based approach that can reliably and effectively differentiate xanthomonads from non-xanthomonads as well as separating the strains belonging to the two described groups of the genus Xanthomonas. The study thus offers valuable tools for disease surveillance and management. It can effectively be applied in rapid assessment of new disease occurrences, for which no specific detection tools could be in place. © 2013 KNPV.

Discover hidden collaborations