Entity

Time filter

Source Type

Sioux Falls, FL, United States

Muller G.C.,Hebrew University of Jerusalem | Hogsette J.A.,Agricultural and Veterinary Entomology | Beier J.C.,University of Miami | Traore S.F.,University of Bamako | And 5 more authors.
Medical and Veterinary Entomology | Year: 2012

The attraction of three Stomoxys species to 26 fruits and 26 flowers of different plant species was investigated in two different sites in Mali during 2008. Stomoxys niger bilineatus Grunberg (Diptera: Muscidae) was attracted to a wider spectrum of species, significantly attracted by four fruits and eight flowers compared with control traps, whereas S. sitiens Rondani (Diptera: Muscidae) was attracted to six fruits and seven flowers of different plants, and S. calcitrans L. (Diptera: Muscidae) was only attracted to one fruit and three flowers. Cold anthrone assays showed a significantly higher prevalence of sugar feeding amongst all three species at the lagoon site than at the site near Mopti. The rhythm of activity study shows temporally separated blood- and sugar-feeding periods for S. niger bilineatus and S. sitiens, but not for S. calcitrans. A comparison between blood and sugar feeding throughout the day shows that sugar feeding activity is as frequent as blood feeding activity. Because not much is known about the preferred sugar sources for Stomoxys species in their natural habitats, the present study provides valuable information regarding the attraction capability of several plants with possible future implication for Stomoxys control strategies. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. Source


Ose G.A.,University of Nebraska - Lincoln | Ose G.A.,Smithsonian Institution | Hogsette J.A.,Agricultural and Veterinary Entomology
Zoo Biology | Year: 2014

Although this study was originally designed to compare the efficacy of two different stable fly traps within 10 sites at a 12-ha zoological park, seasonal and spatial population distribution data were simultaneously collected. The two traps included an Alsynite fiberglass cylindrical trap (AFT) and a blue-black cloth target modified into a cylindrical trap (BCT). Both traps were covered with sticky sleeves to retain the attracted flies. Paired trap types were placed at sites that were 20-100m apart. Distance between trap pairs within sites ranged from 1 to 2m, and was limited by exhibit design and geography. Both trap types reflect/refract ultraviolet (UV) light which attracts adult S. calcitrans. During this 15-week study, AFTs captured significantly more stable flies than the BCTs at 8 of the 10 sites. Of the 12,557 stable flies found on the traps, 80% and 20% were captured by AFTs and BCTs, respectively. The most attractive trap site at the zoo was at the goat exhibit where most stable flies were consistently captured throughout the study. This exhibit was 100m from the other exhibits, next to a small lake, and adjacent to a field containing pastured exotic ungulates, rhea and ostrich. Stable fly populations peaked in early June then slowly decreased as the last trapping date approached. We believe this to be the first seasonality data collected at a zoological park. Results demonstrate the use of urban zoos by stable flies and the need to develop environmentally friendly stable fly management systems for zoos. This article is a U.S. Government work and is in the public domain in the USA. © 2014 Wiley Periodicals, Inc. Source


Junnila A.,Hebrew University of Jerusalem | Kline D.L.,Agricultural and Veterinary Entomology | Muller G.C.,Hebrew University of Jerusalem
Journal of Vector Ecology | Year: 2011

We tested the performance of ten commercial mosquito traps with varying attractive features, against three CDC traps (an unlit model 512, an incandescently lit model 512, and a UV lit model 1212) as well as simple sticky paper, for their ability to attract and capture Phlebotomus papatasi in Israel. The commercial traps tested were the Sentinel 360, the Combo Trap, the Mega Catch Premier, the Bug Eater, the EcoTrap, the Galaxie Power-Vac, the Biter Fighter, the Black Hole, the Mosquito Trap, the Mosquito Catcher, the Sonic Web, the Solar Pest Killer, and a Bug Zapper. The four best performing traps with the highest nightly catches were the Sentinel 360 (85.96 ±19.34), the Combo Trap (70.00±7.78), the Mega Catch Premier (51.93±1.82) and the UV lit CDC 1212 trap (47.64±3.43). Five traps, the Mosquito Trap, the Mosquito Catcher, the Sonic Web, the Solar Pest Killer, and the Bug Zapper, performed exceptionally poorly, catching an average of less than two sand flies per day. To our knowledge, this is the first comprehensive attempt to evaluate commercial traps for their effectiveness in catching sand flies, and we show here that some traps that have been effective in catching mosquitoes are also effective in catching sand flies. © 2011 The Society for Vector Ecology. Source


Kline D.L.,Agricultural and Veterinary Entomology | Hogsette J.A.,Agricultural and Veterinary Entomology | Muller G.C.,Hebrew University of Jerusalem
Journal of Vector Ecology | Year: 2011

We conducted two experiments to determine the best CDC-trap configuration for catching male and female Phlebotomus papatasi. First, visual features were evaluated. Standard CDC traps were modified to have black or white catch bags, black or white lids, or no lids and these were tried in different combinations. Significantly more male sand flies were caught by darker traps; significantly more females were captured by traps with either all black or a combination of black and white features. Attraction may be due to dark color or contrast in colors. CDC traps with suction and the following features were also evaluated: no light; incandescent light; ultraviolet (UV) light; combination of black color, heat and moisture; CO2 alone, or a combination of black color, heat, moisture, and CO2 simultaneously, all in upright and inverted positions, with the opening for insect entry always 50 cm above the ground. Significantly more females than males were caught by all traps (standard and inverted) except the control traps with suction only. Traps with CO2 caught more sand flies than traps without CO2. Traps with black color, heat and moisture captured significantly more sand flies than the control traps, but with the addition of CO2, these traps catch significantly more sand flies than the other traps evaluated. Inverting traps increased the catch for like traps by about two times. © 2011 The Society for Vector Ecology. Source


Kline D.L.,Agricultural and Veterinary Entomology | Muller G.C.,Hebrew University of Jerusalem | Hogsette J.A.,Agricultural and Veterinary Entomology
Journal of Vector Ecology | Year: 2011

In this study, we evaluated the efficacy of eleven commercial models of propane combustion traps for catching male and female Phlebotomus papatasi. The traps differed in physical appearance, amount of carbon dioxide produced and released, type and location of capturing device, and the method by which the trap suction fans were powered. The traps tested were the Mosquito Magnet™(MM)-Pro, MM-Liberty, MM-Liberty Plus, MM-Defender, SkeeterVac®(SV)-35, SV-27, Mosquito Deleto™(MD)-2200, MD-2500, MT150-Power Trap, and two models of The Guardian Mosquito Traps (MK-01 and MK-12). All trap models except the SV-35, the SV-27, the MD-2500, and the MK-12 attracted significantly more females than males. The SV-35 was the most efficient trap, catching significantly more females than all the other models. The MD-2200 and MK-12 models were the least effective in catching either female or male sand flies. These data indicate that several models of propane combustion traps might be suitable substitutes for either CO2-baited or unbaited light traps for adult sand fly surveillance tools. One advantageous feature is the traps' ability to remain operational 24/7 for ca. 20 days on a single tank of propane. Additionally, the models that produce their own electricity to power the trap's fans have an important logistical advantage in field operations over light traps, which require daily battery exchange and charging. © 2011 The Society for Vector Ecology. Source

Discover hidden collaborations