Bundoora, Australia
Bundoora, Australia

Time filter

Source Type

Kittipadakul P.,Kasetsart University | Jaipeng B.,Potato Grower | Slater A.,AgriBio | Stevenson W.,University of Wisconsin - Madison | And 2 more authors.
American Journal of Potato Research | Year: 2016

Potato production has increased dramatically in recent years in Thailand. Consumer demand for fresh and processed potatoes has driven this trend. Most potatoes are produced in northern Thailand in either double cropping highland zones or as a single winter crop following rice in lowland regions. Major production constraints are quality seed, cultivars adapted to short season warm climates, and high disease incidence. There is a need for increased research for cultivar development, access to high quality seed and improved commercial potato production practices. © 2016 The Potato Association of America

Kinoti W.,AgriBio | Plummer K.,University of Vic | Constable F.,AgriBio | Nancarrow N.,AgriBio | Rodoni B.,AgriBio
Acta Horticulturae | Year: 2016

Ilarviruses infect Prunus species with significant economic impact on commercial Prunus industries in Australia. Important Ilarvirus species of Prunus species in Australia are Apple mosaic virus (ApMV), Prunus necrotic ringspot virus (PNRSV) and Prune dwarf virus (PDV) and their diversity and incidence in Australia is not well understood. To understand their strain variation, 178 Prunus tree samples were tested using species-specific Ilarvirus RT-PCR tests targeting the coat protein gene of PNRSV, ApMV and PDV and genus-specific RT-PCR test that targets the RdRP gene of ilarviruses. Variation in the detection of ilarviruses between the speciesspecific and genus-specific RT-PCR tests indicated genetic variation of ilarviruses in the Prunus trees. Selected samples were inoculated on cucumber (Cucumis sativus) indicators and a variation in symptom expression and detection of ilarviruses using the species-specific and genus-specific RT-PCR tests was observed. The PCR products from the Prunus tree and cucumber indicators were sequenced and phylogenetic analysis of the coat protein and RdRP sequences showed clustering of cucumber Ilarvirus isolates away from the Prunus tree isolates suggesting that the cucumber indicators were selecting for specific sequence variants. Further sequence analysis indicated presence of genetic variation amongst Ilarvirus variants in Prunus tree and and the cucumber indicators were selecting for these sequence variants.

Cherot F.,Service Public de Wallonie | Malipatil M.B.,AgriBio | Malipatil M.B.,La Trobe University
Zootaxa | Year: 2016

The Adelphocoris-Creontiades-Megacoelum complex of genera is reviewed. Diagnostic characters for each included genus and species are provided. Two new genera, Poppiomegacoelum n. gen. and Pseudomegacoelum n. gen., are proposed to accommodate Poppiomegacoelum gearyi n. sp.from Australia and four species from west Palearctic previously classified under Megacoelum Fieber, 1858 respectively. Three new species from Australia, Papua New Guinea and Solomon Islands are described: Adelphocorisella rubricornis n. sp., Waucoris solomonensis n. sp. and Waucoris tricolor n. sp. The following new combinations are made: Adelphocorisella brunnescens (Poppius, 1915) [for Adelphocoris brunnescens Poppius, 1915], A. relatum (Distant, 1904) [for Megacoelum relatum Distant, 1904], Macrolygus rubrus (Carvalho, 1987) [for Waucoris rubrus Carvalho, 1987], Miyamotoa mussooriensis (Distant, 1909) [for Megacoelum mussooriense Distant, 1909], Orientomiris ater (Poppius, 1915) [for Creontiades ater Poppius, 1915], O. brunneus (Poppius, 1914) [for Creontiades brunneus Poppius, 1914], O. furhstorferi (Poppius, 1915) [for C. furhstorferi Poppius, 1915], O. maculicollis (Poppius, 1915) [for C. maculicollis Poppius, 1915], O. marginatus (Poppius, 1915) [for C. marginatus Poppius, 1915], O. montanus (Poppius, 1915) [for C. montanus Poppius, 1915], O. monticola (Poppius, 1914) [for Megacoelum monticola Poppius, 1914], O. orientalis (Poppius, 1915) [for Creontiades orientalis Poppius, 1915], O. pallidicornis (Poppius, 1915) [for Megacoelum pallidicorne Poppius, 1915], O. ravana (Kirkaldy, 1909) [for Kangra ravana Kirkaldy, 1909], O. sumatranus (Poppius, 1915) [for Adelphocoris sumatranus Poppius, 1915], O. uzeli (Poppius, 1910) [for Creontiades uzeli Poppius, 1910), Poppiocapsidea tagalica (Poppius, 1915) [for Megacoelum tagalicum Poppius, 1915], Pseudomegacoelum angustum (Wagner, 1965) [for Megacoelum angustum Wagner, 1965], P. beckeri (Fieber, 1870) [for M. beckeri (Fieber, 1870)], P. irbilanum (Linnavuori, 1988) [for M. irbilanum Linnavuori, 1988], P. quercicola (Linnavuori, 1965) [for M. quercicola Linnavuori, 1965], Waucoris poppiusi Chérot & Malipatil [new name and new combination for Megacoelum papuanum Poppius, 1915]. The following new synonymies are established: Creontiades vittipennis Reuter, 1905 (valid name) = Creontiades vitticollis Poppius, 1915 (new subjective synonym), Poppiocapsidea biseratensis (Distant, 1903) (valid name) = Megacoelum townsvillensis Distant, 1904 (new subjective synonym). Cheilocapsidea insignis (Distant, 1909) is recorded from Laos and the male genitalic structures are briefly described for the first time. A lectotype is designated for Capsus antennatus Kirby, 1891, Creontiades ater Poppius, 1915, Creontiades brunneus Poppius, 1914, Creontiades fruhstorferi Poppius, 1915, Creontiades marginatus Poppius, 1915, Creontiades uzeli Poppius, 1910, Megacoelum mussooriensis Distant, 1909, Megacoelum relatum Distant, 1904, and Megacoelum townsvillensis Distant, 1904 (original combinations). A key for the genera included in the Adelphocoris-Creontiades-Megacoelum complex is given. Copyright © 2016 Magnolia Press.

Breen S.,Australian National University | Solomon P.S.,Australian National University | Bedon F.,AgriBio | Bedon F.,La Trobe University | Vincent D.,AgriBio
Frontiers in Plant Science | Year: 2015

Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops. © 2015 Breen, Solomon, Bedon and Vincent.

Loading AgriBio collaborators
Loading AgriBio collaborators