The Agnes Ginges Center for Human Neurogenetics

West Jerusalem, Israel

The Agnes Ginges Center for Human Neurogenetics

West Jerusalem, Israel

Time filter

Source Type

PubMed | Davidoff Institute of Oncology, Hebrew University of Jerusalem and The Agnes Ginges Center for Human Neurogenetics
Type: Journal Article | Journal: Journal of neurosurgery | Year: 2016

OBJECTIVE Bevacizumab is an antiangiogenic agent under investigation for use in patients with high-grade glioma. It produces a high rate of radiological response; however, this response should be interpreted with caution because it may reflect normalization of the tumor vasculature and not necessarily a true antitumor effect. The authors previously demonstrated that 4 hypoxia-mediated microRNAs (miRNA)-miR-210, miR-21, miR-10b, and miR-196b-are upregulated in glioma as compared with normal brain tissue. The authors hypothesized that the regulation and expression of these miRNAs would be altered in response to bevacizumab treatment. The object of this study was to perform longitudinal monitoring of circulating miRNA levels in patients undergoing bevacizumab treatment and to correlate it with tumor response. METHODS A total of 120 serum samples from 28 patients with high-grade glioma were prospectively collected prior to bevacizumab (n = 15) or temozolomide (TMZ; n = 13) treatment and then longitudinally during treatment. Quantification of the 4 miRNAs was evaluated by real-time polymerase chain reaction using total RNA extracted from the serum. At each time point, tumor response was assessed by Response Assessment in Neuro-Oncology criteria and by performing MRI using fluid attenuated inversion recovery (FLAIR) and contrast-enhanced images. RESULTS As compared with pretreatment levels, high levels of miR-10b and miR-21 were observed in the majority of patients throughout the bevacizumab treatment period. miR-10b and miR-21 levels correlated negatively and significantly with changes in enhancing tumor diameters (r = -0.648, p < 0.0001) in the bevacizumab group but not in the TMZ group. FLAIR images and the RANO assessment did not correlate with the sum quantification of these miRNAs in either group. CONCLUSIONS Circulating levels of miR-10b and miR-21 probably reflect the antiangiogenic effect of therapy, but their role as biomarkers for tumor response remains uncertain and requires further investigation.


Friedman-Levi Y.,The Agnes Ginges Center for Human Neurogenetics | Meiner Z.,The Agnes Ginges Center for Human Neurogenetics | Canello T.,The Agnes Ginges Center for Human Neurogenetics | Frid K.,The Agnes Ginges Center for Human Neurogenetics | And 4 more authors.
PLoS Pathogens | Year: 2011

Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments. © 2011 Friedman-Levi et al.


PubMed | The Agnes Ginges Center for Human Neurogenetics
Type: Journal Article | Journal: PLoS pathogens | Year: 2011

Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments.


Duchi S.,Hebrew University of Jerusalem | Ovadia H.,The Agnes Ginges Center for Human Neurogenetics | Touitou E.,Hebrew University of Jerusalem
Journal of Neuroimmunology | Year: 2013

We investigated the efficiency of nasal drug administration as a new non-invasive treatment strategy for MS. Glatiramer Acetate (GA) and GA-Cannabidiol (CBD) combination administered in nasal delivery system (NDS) resulted in a statistically significant decrease of clinical scores and inflammatory cytokine expression in experimental autoimmune encephalomyelitis (EAE) mice. Even a suboptimal dose of Prednisolone in NDS was effective in preventing the clinical signs of the disease. Neuron regeneration was observed in the hippocampus of EAE mice treated with GA-CBD in NDS. This work shows that nasal administration improved drug efficiency and stimulates further research for a non-invasive strategy for MS. © 2013 Elsevier B.V.


PubMed | The Agnes Ginges Center for Human Neurogenetics
Type: Journal Article | Journal: Annals of neurology | Year: 2012

Visual Evoked Potentials (VEPs) following optic neuritis (ON) remain chronically prolonged, although standard visual tests indicate full recovery. We hypothesized that dynamic visual processes, such as motion perception, may be more vulnerable to slowed conduction in the optic nerve, and consequently be better associated with projection rates.Twenty-one patients with acute unilateral, first-ever ON were studied during 1 year. Static visual functions (visual acuity, color perception, visual field, and contrast sensitivity), dynamic visual functions (motion perception), and VEPs were assessed repeatedly.Visual and electrophysiological measurements reached maximal performance 4 months following the acute phase, with no subsequent improvement. Whereas VEP amplitude and static visual functions recovered, VEP latency remained significantly prolonged, and motion perception remained impaired throughout the 12-month period. A strong correlation was found between VEP latencies and motion perception. Visual performance at 1 month was strongly predictive of visual outcome. For static functions, patients who showed partial recovery at 1 month subsequently achieved full recovery. For dynamic functions, the rate of improvement was constant across patients, independent of the initial deficit level.Conduction velocity in the visual pathways correlated closely with dynamic visual functions, implicating the need for rapid transmission of visual input to perceive motion. Motion perception level may serve as a tool to assess the magnitude of myelination in the visual pathways. The constancy across patients may serve as a baseline to assess the efficacy of currently developing neuroprotective and regenerative therapeutic strategies, targeting myelination in the central nervous system.


PubMed | The Agnes Ginges Center for Human Neurogenetics
Type: | Journal: Brain research | Year: 2011

We characterized the effect of acute ischemic stroke on the activation of the hypothalamic-pituitary-adrenal (HPA) axis and evaluated the role of glucocorticoids (GC) in the clinical outcome following ischemic stroke. Male spontaneous hypertensive rats underwent permanent middle cerebral artery occlusion (PMCAO) and developed a cortical infarct. At 4h post-PMCAO or sham operation, serum levels of ACTH and corticosterone (CS) were elevated 5 and 4 fold respectively as compared to controls and then returned to basal levels at 24h post surgery. In these experimental groups we found also a significant depletion of median eminence (ME)-CRH(41). In adrenalectomized (Adx) rats that underwent PMCAO the degree of motor disability and infarct volume was similar to that of intact rats. Administration of dexamethasone (Dex) to Adx-PMCAO rats significantly improved the motor disability and decreased the infarct volume. However, in sham-Adx with PMCAO, Dex had no effect on these two parameters. In rats with PMCAO or sham-PMCAO, brain production of PGE(2) was significantly increased. This effect was further enhanced in Adx-PMCAO rats and significantly inhibited by Dex. In conclusion, activation of the HPA axis following PMCAO is due to stress induced by surgery. This activation is mediated by hypothalamic CRH(41). Absence of endogenous GC or administration of Dex in nave rats does not alter motor and pathological parameters in the acute stage following PMCAO. In contrast, administration of Dex significantly improved the outcome following cerebral ischemia in Adx rats which may be due to increased glucocorticoid receptors. Brain production of PGE(2) does not play an important role in the pathophysiology of the acute phase of cerebral ischemia.

Loading The Agnes Ginges Center for Human Neurogenetics collaborators
Loading The Agnes Ginges Center for Human Neurogenetics collaborators