Santa Clara, CA, United States
Santa Clara, CA, United States

Agilent Technologies, or Agilent, is an American company that designs and manufactures measurement instruments and equipment for life science, medical diagnostics, and chemistry applications.Agilent's predecessor company was Hewlett-Packard , founded in 1939 to make electronic test equipment. In 1999, HP spun-off their test and measurement division as Agilent. The resulting IPO of Agilent stock may have been the largest in the history of Silicon Valley at the time. In 2014, Agilent spun-off its electronics instruments division into Keysight Technologies.Agilent maintains a central research and development group, Agilent Laboratories, that conducts the company's research in such areas as microelectromechanical systems, nanotechnology, and life science. This centralized group is based on the original Hewlett-Packard Lab's design and was formed by dividing the original HP Labs group into two when Agilent was carved out of HP in 1999. Wikipedia.


Time filter

Source Type

Patent
Agilent Technologies | Date: 2017-02-01

A light source (11, 30, 40) having first and second wire-grid polarizers (63, 64) and a laser (31, 71) that emits a beam of linearly polarized light that is characterized by a propagation direction is disclosed. The first wire-grid polarization filter (63) is characterized by a first linear polarization pass direction and a first actuator (65) for causing the first linear polarization pass direction to rotate relative to the beam of linearly polarized light. The second wire-grid polarization filter (64) is characterized by a second linear polarization pass direction and a second actuator for causing the second linear polarization pass direction to rotate relative to the beam of linearly polarized light. A controller (29) sets the first and second linear polarization pass directions to provide linearly polarized light having a specified polarization direction.


An apparatus introduces a sample into a separation unit of a chromatography system with a mobile phase, including first and second mobile phase components. The apparatus includes first and second pump systems, and an injection unit. The first pump system provides the first mobile phase component, first and second portions of the first mobile phase component flowing through first and second branches, respectively. The second pump system provides the second mobile phase component, first and second portions of the second mobile phase component flowing through third and fourth branches, respectively. The injection unit receives a combined stream of the first portions of the first and second mobile phase components provided via the first and third branches, respectively, and to injects the sample into the combined stream to form a sample-containing stream. The sample-containing stream is subsequently combined with the second portions of the first and second mobile phase components provided via the second and fourth branches, respectively, to form a diluted sample-containing stream, which flows to the separation unit for separating sample constituents.


Patent
Agilent Technologies | Date: 2017-03-08

Aspects of the present disclosure include compositions that make use of phosphorus and/or nucleobase protecting groups which find use in the synthesis of long polynucleotides. Phosphorus protecting groups are provided that help increase the stepwise coupling yield and/or phosphorous protecting groups that can be removed during the oxidation step. Amidine nucleobase protecting groups are provided that find use in the subject compositions and methods which provides for e.g., increased resistance to depurination during polynucleotide synthesis. In some instances, the methods and compositions disclosed herein utilize a combination of the phosphorus and amidine nucleobase protecting groups in the synthesis of polynucleotides having a sequence of 200 or more monomeric units in length. Also provided are methods for synthesizing a polynucleotide (e.g., a DNA) using one or more compounds disclosed herein.


Disclosed is a method for processing successive fluid sample portions (104) supplied by a sample source (112); in said method, sample holding volumes (180) are successively temporarily filled with at least one of the sample portions (104), and the sample portions (104) are successively emptied out of the sample holding volumes (112) in such a way that contact between two sample portions (104) that have not been withdrawn from the sample source (112) immediately adjacent to one another is prevented.


A secondary stage sample separation device (90) for separating at least a portion of a fluidic sample, wherein the secondary stage sample separation device (90) comprises a fluidic interface (89) configured for forming a fluidic coupling between a primary stage sample separation device (10) and the secondary separation device so that the fluidic sample separated by the primary stage sample separation device (10) is fluidically suppliable to the secondary stage sample separation device (90) via the fluidic interface (89) for further separation, and a pressure reduction mechanism (44) configured for reducing pressure at the fluidic interface (89) at least in the event of an overpressure or of an excessive pressure increase.


Patent
Agilent Technologies | Date: 2017-02-22

Provided is an emulsion comprising: (a) droplets that contain a single polymeric compound or a pre-defined mixture thereof, and (b) an immiscible liquid, wherein: (i) each of the droplets comprises multiple molecules of the compound(s) contained therein; and the droplets do not contain monomeric precursors for the polymeric compound. A method for making the emulsion is also provided.


Patent
Agilent Technologies | Date: 2017-04-19

Provided herein, among other things, is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. Other embodiments are also provided.


Patent
Agilent Technologies | Date: 2017-04-19

The present disclosure provides a unique methodology and protecting groups that enable synthesis of oligonucleotides having Z nucleotide in an easy, clean and site-specific fashion with high yield. In particular, the method causes little to no damage to oligonucleotide product and does not modify the Z nucleotide itself. The invention provides a viable protection strategy for efficient synthesis of long oligonucleotides with Z nucleotide incorporated therein.


A pump (20) for pumping fluid, wherein the pump (20)comprises a working chamber (200), a piston assembly (202) configured for reciprocating within the working chamber (200) to thereby displace fluid, a piston actuator (204) being rigidly assembled with the piston assembly (202) at least in a working mode of the pump (20) to thereby transmit drive energy to the piston assembly (202) to reciprocate along a common rigid axis (206) of the piston-actuator-assembly, and a bearing arrangement (208, 210) bearing the piston assembly (202) and the piston actuator (204) in the pump (20) so that the piston-actuator-assembly provided by the piston assembly (202) and the piston actuator (204)is capable of performing a pendulum-type compensation motion around a pendulum point (212) at the piston actuator (204) on the common rigid axis (206). Figure2for publication


A multiwell microplate for holding liquid samples, and a method of use thereof. The multiwell microplate includes a frame defining a plurality of wells disposed in a single column, each well having an opening with a length l1. A moat is disposed about the plurality of wells. A plurality of walls traverses the moat, the walls defining a plurality of compartments, each compartment having a length l2 selected from a range of greater than l1 and less than 6l1. A multiwell microplate carrier includes a body defining a plurality of regions configured to hold a plurality of multiwell microplates in parallel, each multiwell microplate defining a single column of wells, and each of the regions defining a plurality of openings that are adapted to mate with the single columns of wells.

Loading Agilent Technologies collaborators
Loading Agilent Technologies collaborators